Insights into shale gas adsorption and an improved method for characterizing adsorption isotherm from molecular perspectives

2021 ◽  
pp. 134183
Author(s):  
Xiaofei Hu ◽  
Ruixue Li ◽  
Ying Ming ◽  
Hucheng Deng
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qing Chen ◽  
Yuanyuan Tian ◽  
Peng Li ◽  
Changhui Yan ◽  
Yu Pang ◽  
...  

Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller) adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.


Computation ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 687-700 ◽  
Author(s):  
Hongguang Sui ◽  
Jun Yao ◽  
Lei Zhang

1996 ◽  
Vol 51 (7) ◽  
pp. 1043-1054 ◽  
Author(s):  
Gregory M. Martinez ◽  
Diran Basmadjian

SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 589-600 ◽  
Author(s):  
Wei Yu ◽  
Kamy Sepehrnoori ◽  
Tadeusz W. Patzek

Summary Production from shale-gas reservoirs plays an important role in natural-gas supply in the United States. Horizontal drilling and multistage hydraulic fracturing are the two key enabling technologies for the economic development of these shale-gas reservoirs. It is believed that gas in shale reservoirs is mainly composed of free gas within fractures and pores and adsorbed gas in organic matter (kerogen). It is generally assumed in the literature that the monolayer Langmuir isotherm describes gas-adsorption behavior in shale-gas reservoirs. However, in this work, we analyzed four experimental measurements of methane adsorption from the Marcellus Shale core samples that deviate from the Langmuir isotherm, but obey the Brunauer-Emmett-Teller (BET) isotherm. To the best of our knowledge, it is the first time to find that methane adsorption in a shale-gas reservoir behaves similar to multilayer adsorption. Consequently, investigation of this specific gas-desorption effect is important for accurate evaluation of well performance and completion effectiveness in shale-gas reservoirs on the basis of the BET isotherm. The difference in calculating original gas in place (OGIP) on the basis of both isotherms is discussed. We also performed history matching with one production well from the Marcellus Shale and evaluated the contribution of gas desorption to the well's performance. History matching shows that gas adsorption obeying the BET isotherm contributes more to overall gas recovery than gas adsorption obeying the Langmuir isotherm, especially at early time in production. This work provides better understanding of gas desorption in shale-gas reservoirs and updates our current analytical and numerical models for simulation of shale-gas production.


1997 ◽  
Vol 36 (9) ◽  
pp. 3993-3994 ◽  
Author(s):  
Dieter Bathen ◽  
Henner Schmidt-Traub ◽  
Marcus Simon

Sign in / Sign up

Export Citation Format

Share Document