B16 melanomas evade antitumor immunity by the loss of epitope presentation and the acquisition of tumor resistance to granzyme B

2021 ◽  
pp. 104394
Author(s):  
Jaeyeon Lee ◽  
Jiyoon Kim ◽  
Jeong-Im Sin
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dragana Miloradovic ◽  
Dragica Miloradovic ◽  
Bojana Simovic Markovic ◽  
Aleksandar Acovic ◽  
Carl Randall Harrell ◽  
...  

There is still a lively debate about whether mesenchymal stem cells (MSCs) promote or suppress antitumor immune response. Although several possible explanations have been proposed, including different numbers of injected and engrafted MSCs, heterogeneity in phenotype, and function of tumor cells, the exact molecular mechanisms responsible for opposite effects of MSCs in modulation of antitumor immunity are still unknown. Herewith, we used a B16F10 murine melanoma model to investigate whether timing of MSC administration in tumor-bearing mice was crucially important for their effects on antitumor immunity. MSCs, intravenously injected 24 h after melanoma induction (B16F10+MSC1d-treated mice), significantly enhanced natural killer (NK) and T cell-driven antitumor immunity, suppressed tumor growth, and improved survival of melanoma-bearing animals. Significantly higher plasma levels of antitumorigenic cytokines (TNF-α and IFN-γ), remarkably lower plasma levels of immunosuppressive cytokines (TGF-β and IL-10), and a significantly higher number of tumor-infiltrating, IFN-γ-producing, FasL- and granzyme B-expressing NK cells, IL-17-producing CD4+Th17 cells, IFN-γ- and TNF-α-producing CD4+Th1 cells, and CD8+cytotoxic T lymphocytes (CTLs) were observed in B16F10+MSC1d-treated mice. On the contrary, MSCs, injected 14 days after melanoma induction (B16F10+MSC14d-treated mice), promoted tumor growth by suppressing antigen-presenting properties of tumor-infiltrating dendritic cells (DCs) and macrophages and by reducing tumoricidal capacity of NK cells and T lymphocytes. Significantly higher plasma levels of TGF-β and IL-10, remarkably lower plasma levels of TNF-α and IFN-γ, and significantly reduced number of tumor-infiltrating, I-A-expressing, and IL-12-producing macrophages, CD80- and I-A-expressing DCs, granzyme B-expressing CTLs and NK cells, IFN-γ- and IL-17-producing CTLs, CD4+Th1, and Th17 cells were observed in B16F10+MSC14d-treated animals. In summing up, the timing of MSC administration into the tumor microenvironment was crucially important for MSC-dependent modulation of antimelanoma immunity. MSCs transplanted during the initial phase of melanoma growth exerted tumor-suppressive effect, while MSCs injected during the progressive stage of melanoma development suppressed antitumor immunity and enhanced tumor expansion.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Naoko Kumagai-Takei ◽  
Yasumitsu Nishimura ◽  
Megumi Maeda ◽  
Hiroaki Hayashi ◽  
Hidenori Matsuzaki ◽  
...  

It is known that asbestos exposure can cause malignant mesothelioma (MM) and that CD8+T cells play a critical role in antitumor immunity. We examined the properties of peripheral blood CD8+lymphocytes from asbestos-exposed patients with pleural plaque (PL) and MM. The percentage of CD3+CD8+cells in PBMCs did not differ among the three groups, although the total numbers of PBMCs of the PL and MM groups were lower than those of the healthy volunteers (HV). The percentage of IFN-γ+and CD107a+cells in PMA/ionomycin-stimulated CD8+lymphocytes did not differ among the three groups. Percentages of perforin+cells and CD45RA−cells in fresh CD8+lymphocytes of PL and MM groups were higher than those of HV. Percentages of granzyme B+and perforin+cells in PMA/ionomycin-stimulated CD8+lymphocytes were higher in PL group compared with HV. The MM group showed a decrease of perforin level in CD8+lymphocytes after stimulation compared with patients with PL. These results indicate that MM patients have characteristics of impairment in stimulation-induced cytotoxicity of peripheral blood CD8+lymphocytes and that PL and MM patients have a common character of functional alteration in those lymphocytes, namely, an increase in memory cells, possibly related to exposure to asbestos.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 321
Author(s):  
So Young Yoo ◽  
Narayanasamy Badrinath ◽  
Su-Nam Jeong ◽  
Hyun Young Woo ◽  
Jeong Heo

The tumor microenvironment (TME) comprises different types of immune cells, which limit the therapeutic efficacy of most drugs. Although oncolytic virotherapy (OVT) boosts antitumor immunity via enhanced infiltration of tumor-infiltrated lymphocytes (TILs), immune checkpoints on the surface of tumors and TILs protect tumor cells from TIL recognition and apoptosis. OVT and immune checkpoint blockade (ICB)-based combination therapy might overcome this issue. Therefore, combination immunotherapies to modify the immunosuppressive nature of TME and block immune checkpoints of immune cells and tumors are considered. In this study, cancer-favoring oncolytic vaccinia virus (CVV) and anti–programmed cell death protein-1 (anti-PD-1) were used to treat mouse colorectal cancer. Weekly-based intratumoral CVV and intraperitoneal anti-PD-1 injections were performed on Balb/c mice with subcutaneous CT26 tumors. Tumor volume, survival curve, and immunohistochemistry-based analysis demonstrated the benefit of co-treatment, especially simultaneous treatment with CVV and anti-PD-1. Infiltration of CD8+PD-1+ T-cells showed correlation with these results. Splenocytes enumeration also suggested CD4+ and CD8+ T-cell upregulation. In addition, upregulated CD8, PD-1, and CD86 messenger RNA expression was observed in this combination therapy. Therefore, CVV+anti-PD-1 combination therapy induces antitumor immunity in the TME, overcoming the rigidity and resistance of the TME in refractory cancers.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Naoko Kumagai-Takei ◽  
Yasumitsu Nishimura ◽  
Hidenori Matsuzaki ◽  
Suni Lee ◽  
Kei Yoshitome ◽  
...  

Although the tumorigenicity of asbestos, which is thought to cause mesothelioma, has been clarified, its effect on antitumor immunity requires further investigation. We previously reported a decrease in the percentage of perforin+ cells of stimulated CD8+ lymphocytes derived from patients with malignant mesothelioma. Therefore, we examined the effects of long-term exposure to asbestos on CD8+ T cell functions by comparing long-term cultures of the human CD8+ T cell line EBT-8 with and without exposure to chrysotile (CH) asbestos as an in vitro model. Exposure to CH asbestos at 5 μg/ml or 30 μg/ml did not result in a decrease in intracellular granzyme B in EBT-8 cells. In contrast, the percentage of perforin+ cells decreased at both doses of CH exposure. CH exposure at 30 μg/ml did not suppress degranulation following stimulation with antibodies to CD3. Secreted production of IFN-γ stimulated via CD3 decreased by CH exposure at 30 μg/ml, although the percentage of IFN-γ+ cells induced by PMA/ionomycin did not decrease. These results indicate that long-term exposure to asbestos can potentially suppress perforin levels and the production of IFN-γ in human CD8+ T cells.


2020 ◽  
Vol 04 (04) ◽  
pp. 369-372
Author(s):  
Paul B. Romesser ◽  
Christopher H. Crane

AbstractEvasion of immune recognition is a hallmark of cancer that facilitates tumorigenesis, maintenance, and progression. Systemic immune activation can incite tumor recognition and stimulate potent antitumor responses. While the concept of antitumor immunity is not new, there is renewed interest in tumor immunology given the clinical success of immune modulators in a wide range of cancer subtypes over the past decade. One particularly interesting, yet exceedingly rare phenomenon, is the abscopal response, characterized by a potent systemic antitumor response following localized tumor irradiation presumably attributed to reactivation of antitumor immunity.


Sign in / Sign up

Export Citation Format

Share Document