scholarly journals CAN1 Arginine Permease Deficiency Extends Yeast Replicative Lifespan via Translational Activation of Stress Response Genes

Cell Reports ◽  
2017 ◽  
Vol 18 (8) ◽  
pp. 1884-1892 ◽  
Author(s):  
Carine Beaupere ◽  
Brian M. Wasko ◽  
Jared Lorusso ◽  
Brian K. Kennedy ◽  
Matt Kaeberlein ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanxing Ma ◽  
Hainan Tian ◽  
Rao Lin ◽  
Wei Wang ◽  
Na Zhang ◽  
...  

AbstractExpression of stress response genes can be regulated by abscisic acid (ABA) dependent and ABA independent pathways. Osmotic stresses promote ABA accumulation, therefore inducing the expression of stress response genes via ABA signaling. Whereas cold and heat stresses induce the expression of stress response genes via ABA independent pathway. ABA induced transcription repressors (AITRs) are a family of novel transcription factors that play a role in ABA signaling, and Drought response gene (DRG) has previously been shown to play a role in regulating plant response to drought and freezing stresses. We report here the identification of DRG as a novel transcription factor and a regulator of ABA response in Arabidopsis. We found that the expression of DRG was induced by ABA treatment. Homologs searching identified AITR5 as the most closely related Arabidopsis protein to DRG, and homologs of DRG, including the AITR-like (AITRL) proteins in bryophytes and gymnosperms, are specifically presented in embryophytes. Therefore we renamed DRG as AITRL. Protoplast transfection assays show that AITRL functioned as a transcription repressor. In seed germination and seedling greening assays, the aitrl mutants showed an increased sensitivity to ABA. By using qRT-PCR, we show that ABA responses of some ABA signaling component genes including some PYR1-likes (PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs) and SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2s (SnRK2s) were reduced in the aitrl mutants. Taken together, our results suggest that AITRLs are a family of novel transcription repressors evolutionally conserved in embryophytes, and AITRL regulates ABA response in Arabidopsis by affecting ABA response of some ABA signaling component genes.


2014 ◽  
Vol 65 (1) ◽  
pp. 297-305
Author(s):  
Angela Guidone ◽  
Eugenio Parente ◽  
Teresa Zotta ◽  
Caitriona M. Guinane ◽  
Mary C. Rea ◽  
...  

MicroRNA ◽  
2021 ◽  
Vol 11 ◽  
Author(s):  
Geysson Javier Fernandez ◽  
Jorge Andrés Castillo ◽  
Diana Marcela Giraldo ◽  
Silvio Urcuqui-Inchima

Background: The pathogenesis associated with Dengue virus (DENV) infection is marked by the impairment of host immune response. Consequently, the modulation of immune response has emerged as an important therapeutic target for the control of DENV infection. Vitamin D has been shown to regulate the immune response in DENV infection, although the molecular mechanism remains poorly understood. Post-transcriptional regulation of mRNA by miRNAs offers an opportunity to gain insight into the immunomodulation mediated by vitamin D Objective: Previously, it has been observed that a high dose of vitamin D (4000 IU) decreased DENV-2 infection and inflammatory response in monocyte-derived macrophages (MDMs). Here, we examine whether high or low doses of vitamin D supplements exert differential effect on miRNA expression in DENV-infected macrophages Methods: We analyzed miRNA expression profiles in MDMs isolated from healthy individuals who were given either 1000 or 4000 IU/day of vitamin D for 10 days. MDMs before or after vitamin D supplementation were challenged with DENV-2, and miRNAs profiles were analyzed by qPCR arrays. Results: DENV-2 infected MDMs supplemented with 4000 IU, showed up-regulation of miR-374a-5p, miR-363-3p, miR-101-3p, miR-9-5p, miR-34a-5p, miR-200a-3p, and the family of miRNAs miR-21-5p, and miR-590-p. The miRNA profile and predicted target mRNAs suggested regulatory pathways in MDMs obtained from healthy donors who received higher doses of vitamin D. These DENV-2 infected MDMs expressed a unique set of miRNAs that target immune and cellular stress response genes. Conclusion: The results suggest vitamin D dose-dependent differential expression of miRNAs target key signaling pathways of the pathogenesis of dengue disease.


Oncotarget ◽  
2013 ◽  
Vol 4 (12) ◽  
pp. 2577-2590 ◽  
Author(s):  
Barak Rotblat ◽  
Thomas G. P. Grunewald ◽  
Gabriel Leprivier ◽  
Gerry Melino ◽  
Richard A. Knight

2003 ◽  
Vol 140-141 ◽  
pp. 149-153 ◽  
Author(s):  
Jonathan G. Moggs ◽  
George Orphanides

2017 ◽  
Vol 29 (4) ◽  
pp. 791-807 ◽  
Author(s):  
Weronika Sura ◽  
Michał Kabza ◽  
Wojciech M. Karlowski ◽  
Tomasz Bieluszewski ◽  
Marta Kus-Slowinska ◽  
...  

2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Jordan M. Boeck ◽  
Gregory A. Stowell ◽  
Christine M. O'Connor ◽  
Juliet V. Spencer

ABSTRACTHuman cytomegalovirus (HCMV) is a widespread pathogen that modulates host chemokine signaling during persistent infection in the host. HCMV encodes four proteins with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs): US27, US28, UL33, and UL78. Each of the four receptors modulates host CXCR4 signaling. US28, UL33, and UL78 impair CXCR4 signaling outcomes, while US27 enhances signaling, as evidenced by increased calcium mobilization and cell migration to CXCL12. To investigate the effects of US27 on CXCR4 during virus infection, fibroblasts were infected with bacterial artificial chromosome-derived clinical strain HCMV TB40/E-mCherry(wild type [WT]), mutants lacking US27 (TB40/E-mCherry-US27Δ [US27Δ]) or all four GPCRs (TB40 E-mCherry-allΔ), or mutants expressing only US27 but not US28, UL33, or UL78 (TB40/E-mCherry-US27wt[US27wt]). CXCR4 gene expression was significantly higher in WT- and US27wt-infected fibroblasts. This effect was evident at 3 h postinfection, suggesting that US27 derived from the parental virion enhanced CXCR4 expression. Reporter gene assays demonstrated that US27 increased transcriptional activity regulated by the antioxidant response element (ARE), and small interfering RNA treatment indicated that this effect was mediated by NRF-1, the primary transcription factor for CXCR4. Increased translocation of NRF-1 into the nucleus of WT-infected cells compared to mock- or US27Δ-infected cells was confirmed by immunofluorescence microscopy. Chemical inhibitors targeting Gβγ and phosphoinositide 3-kinase (PI3K) ablated the increase in ARE-driven transcription, implicating these proteins as mediators of US27-stimulated gene transcription. This work identifies the first signaling pathway activated by HCMV US27 and may reveal a novel regulatory function for this orphan viral receptor in stimulating stress response genes during infection.IMPORTANCEHuman cytomegalovirus (HCMV) is the most common congenital infection worldwide, causing deafness, blindness, and other serious birth defects. CXCR4 is a human chemokine receptor that is crucial for both fetal development and immune responses. We found that the HCMV protein US27 stimulates increased expression of CXCR4 through activation of the transcription factor nuclear respiratory factor 1 (NRF-1). NRF-1 regulates stress response genes that contain the antioxidant response element (ARE), and HCMV infection is associated with increased expression of many stress response genes when US27 is present. Our results show that the US27 protein activates the NRF-1/ARE pathway, stimulating higher expression of CXCR4 and other stress response genes, which is likely to be beneficial for virus replication and/or immune evasion.


Sign in / Sign up

Export Citation Format

Share Document