scholarly journals Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis

Cell Reports ◽  
2017 ◽  
Vol 20 (7) ◽  
pp. 1597-1608 ◽  
Author(s):  
Nathan J. Palpant ◽  
Yuliang Wang ◽  
Brandon Hadland ◽  
Rebecca J. Zaunbrecher ◽  
Meredith Redd ◽  
...  
Haematologica ◽  
2020 ◽  
Vol 105 (11) ◽  
pp. 2561-2571 ◽  
Author(s):  
Sofie Singbrant ◽  
Alexander Mattebo ◽  
Mikael Sigvardsson ◽  
Tobias Strid ◽  
Johan Flygare

Massive expansion of erythroid progenitor cells is essential for surviving anemic stress. Research towards understanding this critical process, referred to as stress-erythropoiesis, has been hampered due to lack of specific marker-combinations enabling analysis of the distinct stress-progenitor cells capable of providing radioprotection and enhanced red blood cell production. Here we present a method for precise identification and in vivo validation of progenitor cells contributing to both steady-state and stress-erythropoiesis, enabling for the first time in-depth molecular characterization of these cells. Differential expression of surface markers CD150, CD9 and Sca1 defines a hierarchy of splenic stress-progenitors during irradiation-induced stress recovery in mice, and provides high-purity isolation of the functional stress-BFU-Es with a 100-fold improved enrichment compared to state-of-the-art. By transplanting purified stress-progenitors expressing the fluorescent protein Kusabira Orange, we determined their kinetics in vivo and demonstrated that CD150+CD9+Sca1- stress-BFU-Es provide a massive but transient radioprotective erythroid wave, followed by multi-lineage reconstitution from CD150+CD9+Sca1+ multi-potent stem/progenitor cells. Whole genome transcriptional analysis revealed that stress-BFU-Es express gene signatures more associated with erythropoiesis and proliferation compared to steady-state BFU-Es, and are BMP-responsive. Evaluation of chromatin accessibility through ATAC sequencing reveals enhanced and differential accessibility to binding sites of the chromatin-looping transcription factor CTCF in stress-BFU-Es compared to steady-state BFU-Es. Our findings offer molecular insight to the unique capacity of stress-BFU-Es to rapidly form erythroid cells in response to anemia and constitute an important step towards identifying novel erythropoiesis stimulating agents.


2008 ◽  
Vol 33 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Peter G. Fuhrken ◽  
Chi Chen ◽  
Pani A. Apostolidis ◽  
Min Wang ◽  
William M. Miller ◽  
...  

Differentiation of hematopoietic stem and progenitor cells is an intricate process controlled in large part at the level of transcription. While some key megakaryocytic transcription factors have been identified, the complete network of megakaryocytic transcriptional control is poorly understood. Using global gene expression microarray analysis, Gene Ontology-based functional annotations, and a novel interlineage comparison with parallel, isogenic granulocytic cultures as a negative control, we closely examined the mRNA level of transcriptional regulators in megakaryocytes derived from human mobilized peripheral blood CD34+hematopoietic cells. This approach identified 199 differentially expressed transcription factors or transcriptional regulators. We identified and detailed the transcriptional kinetics of most known megakaryocytic transcription factors including GATA1, FLI1, and MAFG. Furthermore, many genes with transcription factor activity or transcription factor binding activity were identified in megakaryocytes that had not previously been associated with that lineage, including BTEB1, NR4A2, FOXO1A, MEF2C, HDAC5, VDR, and several genes associated with the tumor suppressor p53 (HIPK2, FHL2, and TADA3L). Protein expression and nuclear localization were confirmed in megakaryocytic cells for four of the novel candidate megakaryocytic transcription factors: FHL2, MXD1, E2F3, and RFX5. In light of the hypothesis that transcription factors expressed in a particular differentiation program are important contributors to such a program, these data substantially expand our understanding of transcriptional regulation in megakaryocytic differentiation of stem and progenitor cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1875-1875
Author(s):  
Laura Barreyro ◽  
Britta Will ◽  
Boris Bartholdy ◽  
Li Zhou ◽  
Tihomira I Todorova ◽  
...  

Abstract Abstract 1875 Recent experimental evidence suggests that acute myeloid leukemia (AML) originates from hematopoietic stem and progenitor cells (HSPC) following the acquisition of multiple genetic or epigenetic changes that initially give rise to pre-leukemic HSPC (pre-LSC) and then to fully transformed leukemia stem cells (LSC). Relapse continues to be the major cause of death in most subtypes of AML, suggesting that current therapies are largely ineffective in eliminating LSC and pre-LSC. Cellular heterogeneity and the recent observation that LSC are contained within different phenotypic cellular compartments are challenges for the identification of pathways contributing to the initiation and maintenance of AML. To address these challenges we employed a novel strategy of parallel transcriptional analysis of multiple phenotypic HSPC populations from individuals with AML with normal karyotype (N=5), -7/7q- (N=6) and complex karyotype (N=5), including long-term HSC, short-term HSC, and granulocyte-monocyte progenitors (GMP), and comparison to corresponding cell populations from age-matched healthy controls (HC) (N=6). Specifically, we sorted Lin−/CD34+/CD38−/CD90+ (LT-HSC), Lin−/CD34+/CD38−/CD90− (ST-HSC), and Lin−/CD34+/CD38+/CD123+/CD45RA+ (GMP), and hybridized RNA to Affymetrix GeneST 1.0 expression arrays. Differential gene expression was determined within each compartment by direct comparison of AML LT-HSC vs. HC LT-HSC, AML ST-HSC vs. HC ST-HSC, and AML GMP vs. HC GMP. Subsequent intersection of all differentially expressed genes revealed that only a relatively small number of 6 to 11 genes were consistently dysregulated in all examined leukemic stem and progenitor cell compartments. Interleukin 1 receptor accessory protein (IL1RAP) was one of the most significantly upregulated genes in LT-HSC, ST-HSC, and GMP in all examined subtypes of AML. IL1RAP is a transmembrane protein required for signaling through several receptors of the IL1 family, including IL-1R1 and ST2. We detected significant overexpression of IL1RAP protein on HSC and progenitor cells of AML patients. Interestingly, CD34+/Lin+ precursor cells showed only a marginal increase of IL1RAP at the protein level in AML, underscoring the importance of purifying HSPC with stringent lineage depletion. We performed fluorescence in situ hybridization in sorted IL1RAP+ and IL1RAP− cells from -7 AML. We observed that the -7 clone was restricted to IL1RAP+ cells, while IL1RAP- cells did not display monosomy 7, demonstrating that IL1RAP overexpression is a distinguishing feature of the cells of the -7 clone. Patients with normal karyotype AML showed a wider range of IL1RAP expression levels; some were as high as in -7 AML and others were as low as in HC. We asked whether IL1RAP expression levels were associated with known clinical or molecular parameters. We analyzed two published datasets of patients with normal karyotype AML (Metzeler, Blood. 2008;112:4193–4201; Tomasson, Blood. 2008;111:4797–4808). Patients with high IL1RAP levels showed inferior overall survival than patients with lower IL1RAP (p=2.2×10−7; median survival: 7.82 mo. for IL1RAP high, 20 mo. for IL1RAP low). Multivariate analysis using a Cox regression model showed that high IL1RAP status was an independent prognostic factor (p=0.002), and even stronger than FLT3 mutation status (p=0.006). In addition, we analyzed data from 183 patients with MDS and found IL1RAP expression to be specifically elevated in cases with RAEB-2, suggesting a role of IL1RAP in MDS and in the progression to AML. Downregulation of IL1RAP protein expression in 4 AML cell lines (THP1, OCI-AML3, HL60, HEL) led to a significant 45–98% decrease in clonogenic growth and increased apoptosis in vitro. To assess the effects of IL1RAP downregulation in vivo, we performed xenotransplants into immunodeficient NOD/SCID/IL2Rg-null mice. THP-1 AML cells showed a 92% reduced proliferation and infiltration of hematopoietic organs upon IL1RAP knockdown in comparison to a non-silencing control in vivo. Genetic studies to assess the role of IL1RAP in the initiation and maintenance of AML in an IL1RAP−/− mouse model are currently ongoing. In summary, our study provides a map of consistently dysregulated transcripts across multiple fractionated stem and progenitor cell types from patients with AML, and identifies IL1RAP as a putative new therapeutic and prognostic target in stem cells in AML and MDS. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 145 ◽  
pp. S101
Author(s):  
Nathan Palpant ◽  
Yuliang Wang ◽  
Brandon Hadland ◽  
Rebecca Zaunbrecher ◽  
Meredith Redd ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (6) ◽  
pp. 1290-1298 ◽  
Author(s):  
Laura Barreyro ◽  
Britta Will ◽  
Boris Bartholdy ◽  
Li Zhou ◽  
Tihomira I. Todorova ◽  
...  

Abstract Cellular and interpatient heterogeneity and the involvement of different stem and progenitor compartments in leukemogenesis are challenges for the identification of common pathways contributing to the initiation and maintenance of acute myeloid leukemia (AML). Here we used a strategy of parallel transcriptional analysis of phenotypic long-term hematopoietic stem cells (HSCs), short-term HSCs, and granulocyte-monocyte progenitors from individuals with high-risk (−7/7q−) AML and compared them with the corresponding cell populations from healthy controls. This analysis revealed dysregulated expression of 11 genes, including IL-1 receptor accessory protein (IL1RAP), in all leukemic stem and progenitor cell compartments. IL1RAP protein was found to be overexpressed on the surface of HSCs of AML patients, and marked cells with the −7/7q− anomaly. IL1RAP was also overexpressed on HSCs of patients with normal karyotype AML and high-risk myelodysplastic syndrome, suggesting a pervasive role in different disease subtypes. High IL1RAP expression was independently associated with poor overall survival in 3 independent cohorts of AML patients (P = 2.2 × 10−7). Knockdown of IL1RAP decreased clonogenicity and increased cell death of AML cells. Our study identified genes dysregulated in stem and progenitor cells in −7/7q− AML, and suggests that IL1RAP may be a promising therapeutic and prognostic target in AML and high-risk myelodysplastic syndrome.


2016 ◽  
Vol 48 (11) ◽  
pp. 771-784
Author(s):  
Jane Synnergren ◽  
Lauren Drowley ◽  
Alleyn T. Plowright ◽  
Gabriella Brolén ◽  
Marie-José Goumans ◽  
...  

Regenerative therapies hold great potential to change the treatment paradigm for cardiac diseases. Human cardiac progenitor cells can be used for drug discovery in this area and also provide a renewable source of cardiomyocytes. However, a better understanding of their characteristics is critical for interpreting data obtained from drug screening using these cells. In the present study, we performed global transcriptional analysis of two important sources of cardiac progenitors, i.e., patient epicardium-derived cells (EPDCs) and cardiac progenitor cells (CPCs) derived from human induced pluripotent stem cells. In addition, we also compared the gene expression profiles of these cells when they were cultured under normoxic and hypoxic conditions. We identified 3,289 mRNAs that were differentially expressed between EPDCs and CPCs. Gene ontology annotation and pathway enrichment analyses further revealed possible unique functions of these two cell populations. Notably, the impact of hypoxia vs normoxia on gene expression was modest and only a few genes (e.g., AK4, ALDOC, BNIP3P1, PGK1, and SLC2A1) were upregulated in EPDCs and CPCs after the cells were exposed to low oxygen for 24 h. Finally, we also performed a focused analysis of the gene expression patterns of a predefined set of 92 paracrine factors. We identified 30 of these genes as differentially expressed, and 29 were expressed at higher levels in EPDCs compared with CPCs. Taken together, the results of the present study advance our understanding of the transcriptional programs in EPDCs and CPCs and highlights important differences and similarities between these cell populations.


2010 ◽  
Vol 34 (8) ◽  
pp. S41-S41
Author(s):  
Yang Bi ◽  
Yun He ◽  
Tingyu Li ◽  
Tao Feng ◽  
Tongchuan He

2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document