Mitigating steel corrosion in reinforced concrete using functional coatings, corrosion inhibitors, and atomistic simulations

2019 ◽  
Vol 101 ◽  
pp. 15-23 ◽  
Author(s):  
Magdalena Balonis ◽  
Gaurav Sant ◽  
O. Burkan Isgor
2015 ◽  
Vol 22 (03) ◽  
pp. 1550040 ◽  
Author(s):  
PANDIAN BOTHI RAJA ◽  
SEYEDMOJTABA GHOREISHIAMIRI ◽  
MOHAMMAD ISMAIL

Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fanxiu Chen ◽  
Zuquan Jin ◽  
Endong Wang ◽  
Lanqin Wang ◽  
Yudan Jiang ◽  
...  

AbstractConcrete cracking caused by corrosion of reinforcement could significantly shorten the durability of reinforced concrete structure. It remains critical to investigate the process and mechanism of the corrosion occurring to concrete reinforcement and establish the theoretical prediction model of concrete expansion force for the whole process of corrosion cracking of reinforcement. Under the premise of uniform corrosion of reinforcing steel bars, the elastic mechanics analysis method is adopted to analyze the entire process starting from the corrosion of steel bars to the cracking of concrete due to corrosion. A relationship model between the expansion force of corrosion of steel bars and the surface strain of concrete is established. On the cuboid reinforced concrete specimens with square cross-sections, accelerated corrosion tests are carried out to calibrate and verify the established model. The model can be able to estimate the real-time expansion force of reinforced concrete at any time of the whole process from the initiation of steel corrosion to the end of concrete cracking by measuring the surface strain of concrete. It could be useful for quantitative real-time monitoring of steel corrosion in concrete structures.


2019 ◽  
Vol 92 (5) ◽  
pp. 620-624
Author(s):  
V. I. Mishurov ◽  
E. N. Shubina ◽  
V. A. Klushin ◽  
A. A. Chizhikova ◽  
V. P. Kashparova ◽  
...  

1990 ◽  
Vol 211 ◽  
Author(s):  
Miguel A. Sanjuan ◽  
A. Moragues ◽  
B. Bacle ◽  
C. Andrade

AbstractThe permeability of concrete to gases is of direct importance to the durability of concrete structures, because of carbon dioxide flowing through the concrete favour lime carbonation and reinforcing steel corrosion.Mortar with and without polypropylene fibres having water/cementitious ratios of 0.30, 0.35 and 0.40 and a cement/sand ratio of 1/1 were studied. Polypropylene dosage varied from 0.1 to 0.3% by volume of cement.The characterization of mortar permeability was made using cylindrical shaped samples (3 cm height and 15 cm diameter). These specimens were 28 days cured and then dried before the test.The addition of fibres results in a decrease of air permeability. Variation of the water/cement ratio is of lesser importance than fiber addition.


2010 ◽  
Vol 36 ◽  
pp. 176-181
Author(s):  
Xian Feng He ◽  
Shou Gang Zhao ◽  
Yuan Bao Leng

The corrosion of steel will have a bad impact on the safety of reinforced concrete structure. In severe cases, it may even be disastrous. In order to understand the impact of steel corrosion on the structure, tests are carried out to study corrosion and expansion rules of steel bars as well as the impact rules of corrosion on bond force between steel and concrete. The results show that wet and salty environment will result in steel corrosion; relatively minor corrosion will not cause expansion cracks of protection layers; when steel rust to a certain extent, it will cause cracks along the protection layer; when there exists minor corrosion in steel and the protection layer does not have expansion cracks, the bond force is still large and rapidly decreases as the corrosion rate increases.


2015 ◽  
Vol 1111 ◽  
pp. 187-192
Author(s):  
Corina Sosdean ◽  
Liviu Marsavina ◽  
Geert de Schutter

Reinforced concrete (RC) became one of the most widely used modern building materials. In the last decades a great interest has been shown in studying reinforcement corrosion as it became one of the main factors of degradation and loss of structural integrity of RC structures. The degradation process is accelerated in the case of RC structures situated in aggressive environments like marine environments or subjected to de-icing salts. In this paper it is shown how steel corrosion of the embedded rebars occurs and how this affects the service life of reinforced concrete structures. Also, an experimental study regarding the combined effect of carbonation and chloride ingress was realized. Samples with and without rebars were drilled from a RC slab which was stored in the laboratory for two years. Non-steady state migration tests were realized in order to determine the chloride profile, while the carbonation depth was measured using the colorimetric method based on phenolphthalein spraying. It was concluded that carbonation has a significant effect on chloride ingress, increasing it.


Sign in / Sign up

Export Citation Format

Share Document