scholarly journals Analysis of the mechanical and fracture behavior of heated ultra-high-performance fiber-reinforced concrete by X-ray computed tomography

2019 ◽  
Vol 119 ◽  
pp. 77-88 ◽  
Author(s):  
José D. Ríos ◽  
Héctor Cifuentes ◽  
Carlos Leiva ◽  
Stanislav Seitl
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Qin ◽  
Hua Wu ◽  
Yong Zheng ◽  
Weina Wang ◽  
Zhijian Yi

Polypropylene fiber-reinforced concrete (PFRC) is a cement-based composite material with short-cut fibers which has been utilized to provide multidimensional reinforcement and enhance toughness of concrete. However, this improvement is closely related to the microstructural morphology of the concrete. A nondestructive technique using X-ray computed tomography (CT) was therefore used to grasp the microscopic texture of PFRC samples. The results showed that the orientation of microcracks, which appear in the interfacial transition zone, are along the surface of the coarse aggregate. The range of distribution of fibers is proportional to fiber volume fraction. The coarse aggregate influence distribution and orientation of polypropylene fibers whose shape are mainly fold line and curve. The dispersion of pores with small volume is uniform, and the distance between the pores with larger volume is short. The proportion of pores with the diameter in the range 0∼199 μm exceeds 70%, of which the sum of volume exceeds a half of total volume with the amount being about 1% of total amount.


Author(s):  
Igor Chilin ◽  

Приведены результаты исследований и выполнена оценка влияния технологических факторов на реологические свойства самоуплотняющихся сталефибробетонных смесей, определены кратковременные и длительные физико-механические и деформативные характеристики сверхвысокопрочного сталефибробетона, включая определение его фактической морозостойкости.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


2017 ◽  
Vol 52 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Duy-Liem Nguyen ◽  
Duc-Kien Thai ◽  
Dong-Joo Kim

This research investigated the effects of direct tensile response on the flexural resistance of ultra-high-performance fiber-reinforced concretes by performing sectional analysis. The correlations between direct tensile and flexural response of ultra-high-performance fiber-reinforced concretes were investigated in detail for the development of a design code of ultra-high-performance fiber-reinforced concrete flexural members as follows: (1) the tensile resistance of ultra-high-performance fiber-reinforced concretes right after first-cracking in tension should be higher than one-third of the first-cracking strength to obtain the deflection-hardening if the ultra-high-performance fiber-reinforced concretes show tensile strain-softening response; (2) the equivalent bottom strain of flexural member at the modulus of rupture is always higher than the strain capacity of ultra-high-performance fiber-reinforced concretes in tension; (3) the softening part in the direct tensile response of ultra-high-performance fiber-reinforced concretes significantly affects their flexural resistance; and (4) the moment resistance of ultra-high-performance fiber-reinforced concrete girders is more significantly influenced by the post-cracking tensile strength rather than the tensile strain capacity. Moreover, the size and geometry effects should be carefully considered in predicting the moment capacity of ultra-high-performance fiber-reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document