Fracture toughness of 3mol% yttria-stabilized zirconia at cryogenic temperatures

2015 ◽  
Vol 41 (3) ◽  
pp. 3888-3895 ◽  
Author(s):  
Weijiang Xue ◽  
Jian Yi ◽  
Zhipeng Xie ◽  
Chang-An Wang
2018 ◽  
Vol 57 (1) ◽  
pp. 54-62 ◽  
Author(s):  
S.V. Bobylev ◽  
A.G. Sheinerman

Abstract A model is proposed describing the effect of crack bridging on the fracture toughness of ceramic/graphene composites. The dependences of the fracture toughness on the graphene content and the sizes of the graphene platelets are calculated in the exemplary case of yttria stabilized zirconia (YSZ)/graphene composites. The calculations predict that if crack bridging prevails over crack deflection during crack growth, the maximum toughening can be achieved in the case of long graphene platelets provided that the latter do not rupture and adhere well to the matrix. The model shows good correlation with the experimental data at low graphene concentrations.


1983 ◽  
Vol 24 ◽  
Author(s):  
J. K. Cochran ◽  
K. O. Legg ◽  
H. F. Solnick-Legg

ABSTRACTSingle crystal yttria stabilized zirconia was implanted with 100 keV Ca+, Al+, and O2+ ions at fluences of 1015 to 6 × 1016 ions/cm2; . Blistering was observed at doses of 3 × 1016; O2;+ cm−2; and 6 × 1016; Al+ cm−2; but none was evident with Ca+. Knoop microhardness with a shallow indenter penetration depth peaked at a dose of 1016; ions/cm−2; for both Al+ and O2;+ but Ca+ produced no effect on microhardness. Vicker's microhardness with a much greater indenter penetration depth was not changed detectably by implantation but fracture toughness measurements from the same Vicker's indentations exhibited 10–23% increases at the highest O2+ doses and 20–25% increases at high Al+ doses. Annealing the highest implant doses at 1200° reduced the fracture toughness to pre-implant levels. Reflection electron diffraction showed that the surface had not been made amorphous by the 6 × 1016; Al+ dose as a well crystallized diffraction pattern was obtained.


Author(s):  
Hong Shen ◽  
Juan Jiang ◽  
Decai Feng ◽  
Chen Xing ◽  
Xiaofeng Zhao ◽  
...  

The crack behaviors of yttrium-stabilized zirconia during laser drilling in air, vacuum, and water environments were investigated. Due to the high stress and low fracture toughness induced by tetragonal-monoclinic phase transformation, tremendous cracks occur during drilling in air. Contrastly, cracks were reduced in vacuum drilling since the phase transformation was suppressed due to the generation of oxygen vacancies. By protection of water, no cracks were observed due to low stress and maintained fracture toughness. The crack mechanisms in different drilling media were discussed.


2017 ◽  
Vol 122 (14) ◽  
pp. 145104 ◽  
Author(s):  
Neelima Mahato ◽  
Ambreen Nisar ◽  
Pratyasha Mohapatra ◽  
Siddharth Rawat ◽  
S. Ariharan ◽  
...  

2012 ◽  
Vol 620 ◽  
pp. 35-39 ◽  
Author(s):  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
Mohamad Hasmaliza ◽  
Mani Maran Ratnam ◽  
Zainal Arifin Ahmad

Fracture toughness and phases of ceramic composites produced from alumina, yttria stabilized zirconia and chromia oxide system was investigated. The Cr2O3weight percent was varied from 0 wt% to 1.0 wt%. Each batch of composition was mixed, uniaxially pressed 13mm diameter and sintered at 1600 C for 4 h in pressureless conditions. Studies on on their mechanical and physical properties such as Vickers hardness and fracture toughness were carried out. Results show that an addition of 0.6 wt% of Cr2O3produces the best mechanical properties. Results of the highest fracture toughness is 4.73 MPa.m1/2,


2013 ◽  
Vol 29 (8) ◽  
pp. 881-887 ◽  
Author(s):  
Ryan N. Chan ◽  
Brian R. Stoner ◽  
Jeffrey Y. Thompson ◽  
Ronald O. Scattergood ◽  
Jeffrey R. Piascik

Author(s):  
M. Kibsey ◽  
J. Romualdez ◽  
X. Huang ◽  
R. Kearsey ◽  
Q. Yang

Representative samples of yttria stabilized zirconia (7YSZ) co-doped with varying concentrations of TiO2 were fabricated using plasma spraying. Samples were sintered in order to minimize porosity and to simulate the bulk material properties. After sintering, porosity levels of less than 1.25% were achieved. Both as-sprayed and sintered samples with 5, 10 and 15 wt% TiO2 addition levels were microstructurally characterized using SEM, XRD and optical image analysis methods. Vickers hardness, Young’s modulus, and fracture toughness were measured using nano and macroindentation methods. Microstructural analysis revealed that sintering of the TiO2 doped samples was required to achieve a homogeneous composition distribution, with TiO2 predominantly residing in solid solution within the ZrO2 matrix. Sintering for 325 hs at 1200 °C resulted in sufficient diffusion of TiO2 into the 7YSZ. The addition of TiO2 stabilized more tetragonal phase as revealed by XRD measurement. Sintering also showed significant improvements in fracture toughness in all co-doped samples. Fracture toughness values calculated using load-independent equations provided a clear trend in fracture toughness improvement with TiO2 addition. Ferroelastic toughening of the tetragonal phase was believed to have played an effect. There was also a reduction in monoclinic phase content with TiO2 addition, which may have limited microcrack formation and consequently increased the fracture toughness. With the addition of 10 wt% TiO2, the fracture toughness was improved by over 50%; however, this improvement started to decline at 15 wt% TiO2 addition. Volumetric porosity measurements also revealed significant improvements in fracture toughness with respect to lowering the porosity content as observed in all sintered samples.


Author(s):  
T. Arunkumar ◽  
G. Anand ◽  
Ram Subbiah ◽  
R. Karthikeyan ◽  
Jaya Jeevahan

AbstractHighly dense yttria-stabilized zirconia (YSZ) nano-ceramics reinforced with TC-CVD-synthesized multiwall carbon nanotubes (MWCNTs) were fabricated using spark plasma sintering at a temperature of 1350°C, the heating rate of 100 °C/min and pressure of 50MPa with a dwell time of 10 minutes. The identical parameters were utilized for fabricating composites with a varying weight ratio of YSZ and MWNCTs. The samples were characterized for their phase transformation, microstructure and elemental composition using x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The physical and mechanical properties such as density, porosity, hardness, fracture toughness and wear were also investigated. The increase in the MWCNTs concentration has resulted in the deterioration of the hardness due to CNT agglomerations. The wear resistance of the composites revealed MWNCTs enhanced wear resistance of YSZ nanocomposite by undergoing MWNCTs pull-out and crack branching mechanisms. Further indentation method and single-beam V-notch beam (SEVNB) methods were utilized to study the effect of MWCNTs on the fracture toughness of the nanocomposites. The fracture toughness of YC1 (6.58 ± 0.3 MPa m1/2) was 21% higher than the YSZ (5.21 ± 0.2 MPa m1/2) due to the toughening mechanisms attributable to crack deflection, branching and bridging of MWCNTs.


Sign in / Sign up

Export Citation Format

Share Document