Low-cost and environment-friendly ceramic foams made from lead–zinc mine tailings and red mud: Foaming mechanism, physical, mechanical and chemical properties

2016 ◽  
Vol 42 (1) ◽  
pp. 1733-1739 ◽  
Author(s):  
Taoyong Liu ◽  
Xiuying Li ◽  
Liming Guan ◽  
Piao Liu ◽  
Ting Wu ◽  
...  
2016 ◽  
Vol 183 ◽  
pp. 362-364 ◽  
Author(s):  
Taoyong Liu ◽  
Yu Tang ◽  
Zhuo Li ◽  
Ting Wu ◽  
Anxian Lu

2004 ◽  
pp. 79-90
Author(s):  
Vesna Vratusa

Efficient nursery production of woody plants, as well as the level of their successful application in urban green spaces, greatly depends upon properties of substrates in which these individuals grow, develop and endure. Furthermore, quality of substrate does not only affect the quality of future product (plant individual or green space), but distinctly determines its price. This element, extremely significant for all countries in transition, thus Serbia as well, commands finding ways of making qualitative, but least expensive substrate. The most logical solution is to use mixtures/substrates of precisely defined properties, composed of domestic components. Results presented in this paper imply that it is possible to create precisely such standard mixtures from domestic resources at relatively low cost, adjusted to needs of particular species, which would ultimately lead to successful, non-expensive nursery production and application of produced stock, both on domestic and foreign markets.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ghazanfar Abbas ◽  
Muhammad Ibrahim ◽  
Ali Ahmad ◽  
Muhammad Azeem ◽  
Kashif Elahi

Natural zeolites are commonly described as macromolecular sieves. Zeolite networks are very trendy chemical networks due to their low-cost implementation. Sodalite network is one of the most studied types of zeolite networks. It helps in the removal of greenhouse gases. To study this rich network, we use an authentic mathematical tool known as M-polynomials of the topological index and show some physical and chemical properties in numerical form, and to understand the structure deeply, we compare different legitimate M-polynomials of topological indices, concluding in the form of graphical comparisons.


2005 ◽  
Vol 480-481 ◽  
pp. 161-164 ◽  
Author(s):  
Luís Cadillon Costa ◽  
A. Correia ◽  
A. Viegas ◽  
João Bessa Sousa ◽  
François Henry

The materials used in microwave oven cavities must have specific dielectric properties in order to maintain the efficiency of the food heating. Plastics, by their mechanical and chemical properties and low cost, are one of those potential materials. In this study, we present the results of the measurements of complex dielectric constant, ´´ ´ * e e e í − = , in the microwave frequency region, on different plastics: polyoxymethylene (POM), polypropylene (PP) and polybutylene terephtalate (PBT), using the cavity resonant method. We measure the shift in the resonant frequency of the cavity, Df, caused by the insertion of the sample, which can be related to the real part of the complex permitivitty, e´, while the change in the inverse of the quality factor of the cavity, D(1/Q), gives the imaginary part, e´´. The relations are simple when we consider only the first order perturbation in the electric field caused by the sample.


2018 ◽  
Vol 930 ◽  
pp. 254-257 ◽  
Author(s):  
Francisca Pereira de Araújo ◽  
Josy Anteveli Osajima ◽  
Mônica Regina Silva de Araujo ◽  
Edson Cavalcanti da Silva Filho ◽  
João Sammy Nery de Souza

Polystyrene is commercial polymer of extensive use in industrial scale due to great physical and chemical properties and low cost. Lifespan of polymer materials can be changed by incorporation of additions to polymeric matrix.The present study aimed to evaluate the influence of crystal violet dye in polystyrene matrices when irradiated by visible radiation. The samples were studied in the form of films, in which solution of crystal violet (5.0x10-4mol.L-1) was added to the PS solution (8% w / w). The films were irradiated with commercial lamp for 150 hours and analyzed with UV-Vis and FTIR. The results showed that the dye degraded at a rate of 16%, however the FTIR analysis revealed that polystyrene did not degrade under the conditions studied, since no formation of carbonyl compounds was observed.


Hernia ◽  
2020 ◽  
Vol 24 (6) ◽  
pp. 1345-1359 ◽  
Author(s):  
Reiko Wiessner ◽  
R. Lorenz ◽  
A. Gehring ◽  
T. Kleber ◽  
C. Benz ◽  
...  

Abstract Introduction In Africa and other Low Resource Settings (LRS), the guideline-based and thus in most cases mesh-based treatment of inguinal hernias is only feasible to a very limited extent. This has led to an increased use of low cost meshes (LCMs, mostly mosquito meshes) for patients in LRS. Most of the LCMs used are made of polyethylene or polyester, which must be sterilized before use. The aim of our investigations was to determine changes in the biocompatibility of fibroblasts as well as mechanical and chemical properties of LCMs after steam sterilization. Material and methods Two large-pored LCMs made of polyester and polyethylene in a size of 11 x 6 cm were cut and steam sterilized at 100, 121 and 134 °C. These probes and non-sterile meshes were then subjected to mechanical tensile tests in vertical and horizontal tension, chemical analyses and biocompatibility tests with human fibroblasts. All meshes were examined by stereomicroscopy, scanning electron microscopy (SEM), LDH (cytotoxicity) measurement, viability testing, pH, lactate and glycolysis determination. Results Even macroscopically, polyethylene LCMs showed massive shrinkage after steam sterilization, especially at 121 and 134 °C. While polyester meshes showed no significant changes after sterilization with regard to deformation and damage as well as tensile force and stiffness, only the unsterile polyethylene mesh and the mesh sterilized at 100 °C could be tested mechanically due to the shrinkage of the other specimen. For these meshes the tensile forces were about four times higher than for polyester LCMs. Chemical analysis showed that the typical melting point of polyester LCMs was between 254 and 269 °C. Contrary to the specifications, the polyethylene LCM did not consist of low-density polyethylene, but rather high-density polyethylene and therefore had a melting point of 137 °C, so that the marked shrinkage described above occurred. Stereomicroscopy confirmed the shrinkage of polyethylene LCMs already after sterilization at 100 °C in contrast to polyester LCMs. Surprisingly, cytotoxicity (LDH measurement) was lowest for both non-sterile LCMs, while polyethylene LCMs sterilized at 100 and 121 °C in particular showed a significant increase in cytotoxicity 48 hours after incubation with fibroblasts. Glucose metabolism showed no significant changes between sterile and non-sterile polyethylene and polyester LCMs. Conclusion The process of steam sterilization significantly alters mechanical and structural properties of synthetic hernia mesh implants. Our findings do not support a use of low-cost meshes because of their unpredictable properties after steam sterilization.


Sign in / Sign up

Export Citation Format

Share Document