Improving the adhesive, mechanical, tribological properties and corrosion resistance of reactive sputtered tantalum oxide coating on Ti6Al4V alloy via introducing multiple interlayers

Author(s):  
Ziyu Ding ◽  
Yinghong Tang ◽  
Lei Liu ◽  
Zeliang Ding ◽  
Yimin Tan ◽  
...  
2018 ◽  
Vol 70 (8) ◽  
pp. 1536-1544 ◽  
Author(s):  
Wen-Hsien Kao ◽  
Yean-Liang Su ◽  
Jeng-Haur Horng ◽  
Shu-Er Yang

Purpose This paper aims to investigate the tribology, corrosion resistance and biocompatibility of high-temperature gas-nitrided Ti6Al4V alloy. Design/methodology/approach The tribological properties were studied by reciprocating wear tester. The corrosion resistance was evaluated by using potentiodynamic polarization test. The purified mouse leukaemic monocyte macrophage cells are used to investigate the biocompatibility. Findings The results show that the nitriding treatment leads to a significant improvement in the hardness and tribological properties of Ti6Al4V alloy. Specifically, compared to untreated Ti6Al4V, the hardness increases from 3.24 to 9.02 GPa, while the wear rate reduces by 12.5 times in sliding against a Ti6Al4V cylinder and 19.6 times in sliding against a Si3N4 ball. Furthermore, the nitriding treatment yields an improved corrosion resistance and a biocompatibility similar to that of untreated Ti6Al4V. Originality/value The nitrided Ti6Al4V alloy is an ideal material for the fabrication of load-bearing artificial implants.


2019 ◽  
Vol 94 ◽  
pp. 920-928 ◽  
Author(s):  
Hassnain Asgar ◽  
K.M. Deen ◽  
Zia Ur Rahman ◽  
Umair Hussain Shah ◽  
Mohsin Ali Raza ◽  
...  

Rare Metals ◽  
2016 ◽  
Vol 36 (11) ◽  
pp. 858-864 ◽  
Author(s):  
Jin-Long Li ◽  
Gang-Yi Cai ◽  
Hua-Sheng Zhong ◽  
Yong-Xin Wang ◽  
Jian-Min Chen

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


2021 ◽  
pp. 109478
Author(s):  
Yongqiang Fu ◽  
Fei Zhou ◽  
Jundong Feng ◽  
Huiyao Luo ◽  
Maoda Zhang

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 784
Author(s):  
Longlong Zhang ◽  
Yuanzhi Wu ◽  
Tian Zeng ◽  
Yu Wei ◽  
Guorui Zhang ◽  
...  

The purpose of this study was to improve the cellular compatibility and corrosion resistance of AZ31 magnesium alloy and to prepare a biodegradable medical material. An aminated hydroxyethyl cellulose (AHEC) coating was successfully prepared on the surface of a micro-arc oxide +AZ31 magnesium alloy by sol–gel spinning. The pores of the micro-arc oxide coating were sealed. A polarization potential test analysis showed that compared to the single micro-arc oxidation coating, the coating after sealing with AHEC significantly improved the corrosion resistance of the AZ31 magnesium alloy and reduced its degradation rate in simulated body fluid (SBF). The CCK-8 method and cell morphology experiments showed that the AHEC + MAO coating prepared on the AZ31 magnesium alloy had good cytocompatibility and bioactivity.


Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

Electroless nickel composite coatings possess excellent mechanical and tribological properties such as, hardness, wear and corrosion resistance. Composite coatings can easily be coated not only on electrically conductive materials but also on non-conductive materials like as fabrics, plastics, rubber, etc. This review emphasizes on the development of electroless nickel composite coatings by incorporating different types of hard/soft particles (micro/nano size) in the electroless Ni-P matrix to improve the mechanical and tribological properties of the coatings. The preparation of electroless bath for nickel-phosphorus composite coating, methods to incorporate hard and/or soft particles in the bath, factors affecting the particle incorporation in the coating and its effect on coating structure, hardness, wear resistance, friction behavior, corrosion resistance, and mechanical properties are discussed thoroughly.


2015 ◽  
Vol 278 ◽  
pp. 99-107 ◽  
Author(s):  
A. Castellanos ◽  
A. Altube ◽  
J.M. Vega ◽  
E. García-Lecina ◽  
J.A. Díez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document