Interface microstructure and bonding performance of brazed W-coated diamonds using Ni–Cr alloy

Author(s):  
Shuyi Wang ◽  
Bing Xiao ◽  
HaoZhong Xiao ◽  
Xianglong Meng
2013 ◽  
Vol 51 (7) ◽  
pp. 535-545 ◽  
Author(s):  
Kwang-Seok Lee ◽  
Su-Eun Lee ◽  
Jung Su Kim ◽  
Min Jung Kim ◽  
Dong Hyun Bae ◽  
...  

2017 ◽  
Vol 6 (3) ◽  
pp. 1
Author(s):  
KAUSHAL LOKENDRA ◽  
MAURYA MADAN CHANDRA ◽  
◽  
Keyword(s):  

2019 ◽  
Vol 65 (2) ◽  
pp. 1949-2261
Author(s):  
Fatma Abdelgawad ◽  
Rasha Abdelraouf ◽  
Manar Mohammed

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 543 ◽  
Author(s):  
Tzu-Yu Peng ◽  
Saiji Shimoe ◽  
Lih-Jyh Fuh ◽  
Chung-Kwei Lin ◽  
Dan-Jae Lin ◽  
...  

Poly(aryl–ether–ketone) materials (PAEKs) are gaining interest in everyday dental practices because of their natural properties. This study aims to analyze the bonding performance of PAEKs to a denture acrylic. Testing materials were pretreated by grinding, sandblasting, and priming prior to polymerization with the denture acrylic. The surface morphologies were observed using a scanning electron microscope and the surface roughness was measured using atomic force microscopy. The shear bond strength (SBS) values were determined after 0 and 2500 thermal cycles. The obtained data were analyzed using a paired samples t-test and Tukey’s honestly significant difference (HSD) test (α = 0.05). The surface characteristics of testing materials after different surface pretreatments showed obvious differences. PAEKs showed lower surface roughness values (0.02–0.03 MPa) than Co-Cr (0.16 MPa) and zirconia (0.22 MPa) after priming and sandblasting treatments (p < 0.05). The SBS values of PAEKs (7.60–8.38 MPa) met the clinical requirements suggested by ISO 10477 (5 MPa). Moreover, PAEKs showed significantly lower SBS reductions (p < 0.05) after thermal cycling fatigue testing compared to Co-Cr and zirconia. Bonding performance is essential for denture materials, and our results demonstrated that PAEKs possess good resistance to thermal cycling fatigue, which is an advantage in clinical applications. The results imply that PAEKs are potential alternative materials for the removable of prosthetic frameworks.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110077
Author(s):  
Chao Du ◽  
Cuirong Liu ◽  
Xu Yin ◽  
Haocheng Zhao

Herein, we synthesized a new polyethylene glycol (PEG)-based solid polymer electrolyte containing a rare earth oxide, CeO2, using mechanical metallurgy to prepare an encapsulation bonding material for MEMS. The effects of CeO2 content (0–15 wt.%) on the anodic bonding properties of the composites were investigated. Samples were analyzed and characterized by alternating current impedance spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, tensile strength tests, and anodic bonding experiments. CeO2 reduced the crystallinity of the material, promoted ion migration, increased the conductivity, increased the peak current of the bonding process, and increased the tensile strength. The maximum bonding efficiency and optimal bonding layer were obtained at 8 wt% CeO2. This study expands the applications of solid polymer electrolytes as encapsulation bonding materials.


2020 ◽  
Vol 40 (4) ◽  
pp. 314-320 ◽  
Author(s):  
Tariq Aziz ◽  
Hong Fan ◽  
Xiangwei Zhang ◽  
Farman Ullah Khan ◽  
Shah Fahad ◽  
...  

AbstractThe adhesive properties of a self-prepared bio-based epoxy resin with native cellulose nanocrystals (CNCs) are evaluated in this article. The porosity of actual CNCs is high. The most promising finding is the acquisition of high tensile modulus. The addition of CNC composites significantly increased the tensile modulus at lower wt.%, and the maximum crystallinity of CNCs was obtained. Bearing in mind the advantages of CNCs, scanning electron microscopy (SEM) showed a uniform distribution of concentrated CNCs. Clusters were formed at higher CNCs ratios, and the composite matrix content with high CNCs produced good expansion, low crystallinity, and increased elongation. Our analysis showed that the original CNCs were more evenly distributed in the self-prepared bio-based epoxy resin, which enhanced transformation, supported by improved dispersion of native CNCs. The presence of native CNCs greatly improved and enhanced the bonding performance of the bio-based epoxy resin in the interface area. Enhancing the mechanical properties of native CNCs has broad application prospects in environmental areas. This suggests that the widespread use of native CNCs in environmental engineering applications is feasible, especially in terms of adhesives properties.


Sign in / Sign up

Export Citation Format

Share Document