Effect of fiber factor on the workability and mechanical properties of polyethylene fiber-reinforced high toughness geopolymers

Author(s):  
Cheng-feng Hu ◽  
Li Li ◽  
Zongli Li
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tian-Feng Yuan ◽  
Jin-Young Lee ◽  
Kyung-Hwan Min ◽  
Young-Soo Yoon

This paper presents experimental investigations on the mechanical properties of no-slump high-strength concrete (NSHSC), such as the compressive and flexural strength. First, to determine the proper NSHSC mixtures, the compressive and flexural strength of three different water-to-binder ratios (w/b) of specimens with and without polyethylene (PE) fiber was tested at test ages. Then, the effect of hybrid combinations of PE fiber and steel fiber (SF) on the compressive strength, flexural strength, flexural toughness, and flexural energy dissipation capacity was experimentally investigated. Furthermore, the various hybrid fiber-reinforced NSHSCs were evaluated, and their synergy was calculated, after deriving the benefits from each of the individual fibers to exhibit a synergetic response. The test results indicate that a w/b of 16.8% with or without fibers had lower strength and flexural strength (toughness) than those of other mixtures (w/b of 16.4% and 17.2%). Specimens with a hybrid of SF and short PE fibers exhibited a higher compressive and flexural strength, flexural toughness, energy dissipation capacity, and fiber synergy in all considered instances.


2020 ◽  
Vol 28 ◽  
pp. 02005
Author(s):  
Siti Sunarintyas ◽  
Cheah Yi ◽  
Purwanto Agustiono

Addition of fiber to dental bridgework was thought to be more efficient comparing to porcelain-fused to metalwork. In other side, some patients consumed alcoholic beverage in their daily life. This study aimed to determine mechanical properties of fiber-reinforced composite (FRC) exposed to alcoholic beverage. The materials used were dental resin (i-FLOW i-dental, Lithuania), polyethylene fiber (Vactrise, USA), and 4 alcoholic beverages. FRC samples (40) were divided into 10 groups (n=4, control:aquades). Each Sample was soaked in beverage for 5 s followed by 5 s in aquades for each cycle (10 cycles daily for 4 wk). Mechanical properties were examined for hardness and flexural strength. The result showed the mean values for hardness (KHN) were: 98.70±6.03 (aquades), 99.01±4.92 (Beer), 87.65±7.83 (Vermouth), 80.23±5.22 (Rum), 78.20±3.70 (Tequila); while for flexural strength (MPa) were: 336.00±25.05 (aquades), 308.25±10.39 (Beer), 215.07±34.86 (Vermouth), 194.89±27.69 (Rum), 175.48±33.58 (Tequila). The ANOVA revealed significant differences in hardness and flexural strength (p<0.05). The LSD showed no significant difference in hardness and flexural strength of FRC soaked in aquades and Beer, while for other groups and aquades the differences were significant. In conclusion, FRCs soaked in different concentration of alcoholic beverages affected the decrease of hardness and flexural strength properties.


Sign in / Sign up

Export Citation Format

Share Document