scholarly journals Modeling of transitional pore blockage to cake filtration and modified fouling index – Dynamical surface phenomena in membrane filtration

2019 ◽  
Vol 193 ◽  
pp. 298-311 ◽  
Author(s):  
Bassirou Mahamadou Harouna ◽  
Othmane Benkortbi ◽  
Salah Hanini ◽  
Abdeltif Amrane
2017 ◽  
Vol 528 ◽  
pp. 112-125 ◽  
Author(s):  
Qi Han ◽  
Weiyi Li ◽  
Thien An Trinh ◽  
Xin Liu ◽  
Jia Wei Chew

1997 ◽  
Vol 31 (3) ◽  
pp. 665-670 ◽  
Author(s):  
Birgitte L. Sørensen ◽  
Peter B. Sorensen

2019 ◽  
Vol 13 (1) ◽  
pp. 6 ◽  
Author(s):  
Iqbal Shalahuddin ◽  
Yusuf Wibisono

A B S T R A C TMicrofiltration is a low pressure driven membrane process of about 1 bar trans-membrane pressure which is used frequently for separating dissolved particles within 0.1 to 10 μm size. Microfiltration membranes are utilized in water and wastewater treatment processes either during pretreatment, treatment, or post-treatment steps. Moreover in bioprocessing, microfiltration is used in upstream process for substrate sterilization or in downstream process for microbial suspension separation. Fouling is one major concern of membrane filtration processes, including microfiltration. In this article, the fouling mechanism on microfiltration membrane is explained based on the blocking model refer to cake filtration due to the complexity of fouling phenomena. Fouling mechanism on dead-end and cross-flow modes microfiltration are explained, and basically distinguished into four different mechanisms, i.e. complete blocking, standard blocking, intermediate blocking and cake filtration. The proposed models are based on constant pressure operation on the uniform membrane pores, both for dead-end and cross-flow modes. Cross-flow mode, however, is restricted on the beginning of filtration until critical flux condition is reached.Keywords: bioprocess; blocking model; cake filtration; fouling; microfiltration; wastewater A B S T R A KMembran mikrofiltrasi merupakan salah satu teknologi membran yang menggunakan tekanan rendah sekitar 1 bar sebagai gaya pendorong dan digunakan untuk proses pemisahan partikel terlarut yang berukuran antara 0,1 hingga 10 μm. Membran mikrofiltrasi banyak digunakan baik dalam proses pra-pengolahan, pengolahan, maupun pasca-pengolahan air dan air limbah. Pada bioproses, mikrofitrasi juga digunakan pada proses hulu untuk sterilisasi substrat atau pada proses hilir untuk pemisahan suspensi mikrob. Masalah yang paling utama dalam proses filtrasi membran adalah fouling. Dalam artikel ini, mekanisme terjadinya fouling pada membran mikrofiltrasi dijelaskan dengan menggunakan model pemblokiran yang mengacu pada filtrasi deposit partikel (cake) untuk menguraikan kerumitan fenomena fouling dalam mikrofiltrasi. Pada tulisan ini dijelaskan lebih rinci mengenai mekanisme fouling baik pada mikrofiltrasi searah (dead-end) maupun aliran silang (cross-flow). Mekanisme fouling pada proses mikrofiltrasi bisa dimodelkan dengan empat model yaitu pemblokiran pori, penyempitan pori, pemblokiran pori bersamaan dengan endapan permukaan dan formasi endapan permukaan. Mekanisme tersebut berlaku pada kondisi operasional bertekanan tetap dan ukuran pori yang seragam, baik pada aliran searah ataupun silang. Hanya saja, model mekanisme pada aliran silang hanya berlaku pada kondisi awal filtrasi hingga tercapai kondisi fluks kritis.Kata kunci: air limbah; bioproses; filtrasi cake; fouling; mikrofiltrasi; model pemblokiran


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 651
Author(s):  
Haotian Mu ◽  
Qi Qiu ◽  
Renzhen Cheng ◽  
Liping Qiu ◽  
Kang Xie ◽  
...  

With the development of the refining industry, the treatment of refinery wastewater has become an urgent problem. In this study, a ceramic membrane (CM) was combined with Fenton-activated carbon (AC) adsorption to dispose of refinery wastewater. The effect of the combined process was analyzed using excitation–emission matrix (EEM), ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopies (FTIR). Compared with direct filtration, the combined process could significantly improve the removal of organic pollution, where the removal rate of the COD and TOC could be 70% and the turbidity removal rate was above 97%. It was found that the effluent could meet the local standards. In this study, the membrane fouling was analyzed for the impact of the pretreatment on the membrane direction. The results showed that Fenton-AC absorption could effectively alleviate membrane fouling. The optimal critical flux of the combined process was increased from 60 to 82 L/(m2·h) compared with direct filtration. After running for about 20 d, the flux remained at about 55 L/(m2·h) and the membrane-fouling resistance was only 1.2 × 1012 m−1. The Hermia model revealed that cake filtration was present in the early stages of the combined process. These results could be of great use in improving the treatment efficiency and operation cycle of refinery wastewater.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 217-222 ◽  
Author(s):  
N. Lee ◽  
G. Amy ◽  
H. Habarou ◽  
J.C. Schrotter

Natural organic matter (NOM) is responsible for organic fouling during membrane filtration. Flux decline can be affected by the characteristics of the NOM and its interaction with membranes and their associated properties. The results showed that serious flux decline observed for MF membranes may be caused by pore blockage associated with large (macromolecular) hydrophilic molecules. In the case of UF membranes, flux decline may be caused by sequential or simultaneous processes such as cake/gel formation with large (macromolecular) molecules and pore blockage with relatively smaller molecules during filtration. The flux decline tests with representative macromolecules showed that fouling was affected more by the physical characteristics (e.g. size and structure (shape)) of foulants than the characteristics (e.g. hydrophilicity) of foulants.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 277-283 ◽  
Author(s):  
J.Q.J.C. Verberk ◽  
J. Post ◽  
W.G.J. van der Meer ◽  
J.C. van Dijk

Capillary nanofiltration is a new concept in membrane filtration. This technique combines the advantages of the good water quality obtained from nanofiltration membranes with the easy hydraulic cleaning of capillary membranes. Direct capillary nanofiltration can be used to treat ground water or surface water without pre-treatment. At the Delft University of Technology several MSc-thesis projects have been carried out on this subject. This paper will describe some results of these studies. A model based on a mass balance to predict the flux of a capillary nanofiltration installation treating groundwater is proposed. In this model the only resistance taken into account is the concentration polarisation. Also a model to predict the flux when treating surface water has been developed. This model takes into account the resistance due to cake filtration.


RSC Advances ◽  
2016 ◽  
Vol 6 (75) ◽  
pp. 71744-71756 ◽  
Author(s):  
Maryam Abbasi Monfared ◽  
Norollah Kasiri ◽  
Toraj Mohammadi

Membrane pore blockage is a great concern during membrane processes in oily water treatment.


2002 ◽  
Vol 79 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Laura Palacio ◽  
Chia-Chi Ho ◽  
Andrew L. Zydney

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1178
Author(s):  
Jenyuk Lohwacharin ◽  
Thitiwut Maliwan ◽  
Hideki Osawa ◽  
Satoshi Takizawa

The presence of multiple contaminant species in surface waters makes surface water treatment difficult to accomplish through a single process. Herein, we evaluated the ability of an integrated adsorption/ultrafiltration (UF) membrane filtration system to simultaneously remove phosphates and dissolved organic matter (DOM). When bare powdered activated carbon (PAC) and PAC impregnated with amorphous ferrihydrite (FHPAC) adsorbents were compared, FHPAC showed a greater adsorption rate and capacity for phosphate. FHPAC had a phosphate adsorption capacity of 2.32 mg PO43−/g FHPAC, even when DOM was present as a competing adsorbate. In a lab-scale hybrid FHPAC-UF system (i.e. integrated adsorption by FHPAC with UF membrane filtration), irreversible membrane fouling was ca. three times lower than that in a PAC-UF system. When membrane fouling in the PAC-UF system was described with pore blockage models, we found that the main cause of fouling was bacterial deposition on the membrane surface. CLSM analysis determined that the chemical composition of foulants in the PAC-UF system included higher proportions of proteins, nucleic acids, and alpha-polysaccharides than that in the FHPAC-UF system. Overall, FHPAC’s ability to undergo ligand exchanges with DOM helped to reduce the nutrients and bacteria that cause biofouling to accumulate on the membrane surface.


Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 171 ◽  
Author(s):  
Hao Xu ◽  
Kang Xiao ◽  
Jinlan Yu ◽  
Bin Huang ◽  
Xiaomao Wang ◽  
...  

Membrane fouling is a complicated issue in microfiltration and ultrafiltration. Clearly identifying the dominant fouling mechanisms during the filtration process is of great significance for the phased and targeted control of fouling. To this end, we propose a semi-empirical multiple linear regression model to describe flux decline, incorporating the five fouling mechanisms (the first and second kinds of standard blocking, complete blocking, intermediate blocking, and cake filtration) based on the additivity of the permeate volume contributed by different coexisting mechanisms. A piecewise fitting protocol was established to distinguish the fouling stages and find the significant mechanisms in each stage. This approach was applied to a case study of a microfiltration membrane filtering a model foulant solution composed of polysaccharide, protein, and humic substances, and the model fitting unequivocally revealed that the dominant fouling mechanism evolved in the sequence of initial adaptation, fast adsorption followed by slow adsorption inside the membrane pores, and the gradual growth of a cake/gel layer on the membrane surface. The results were in good agreement with the permeate properties (total organic carbon, ultraviolet absorbance, and fluorescence) during the filtration process. This modeling approach proves to be simple and reliable for identifying the main fouling mechanisms during membrane filtration with statistical confidence.


Sign in / Sign up

Export Citation Format

Share Document