Spectroscopic study of the effects of dissolved organic matter compositional changes on availability of cadmium in paddy soil under different water management practices

Chemosphere ◽  
2019 ◽  
Vol 225 ◽  
pp. 414-423 ◽  
Author(s):  
Zhongwu Li ◽  
Mei Huang ◽  
Ninglin Luo ◽  
Jiajun Wen ◽  
Chuxiong Deng ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Rachel P. Martineac ◽  
Alexey V. Vorobev ◽  
Mary Ann Moran ◽  
Patricia M. Medeiros

Uncovering which biogeochemical processes have a critical role controlling dissolved organic matter (DOM) compositional changes in complex estuarine environments remains a challenge. In this context, the aim of this study is to characterize the dominant patterns of variability modifying the DOM composition in an estuary off the Southeastern U.S. We collected water samples during three seasons (July and October 2014 and April 2015) at both high and low tides and conducted short- (1 day) and long-term (60 days) dark incubations. Samples were analyzed for bulk DOC concentration, and optical (CDOM) and molecular (FT-ICR MS) compositions and bacterial cells were collected for metatranscriptomics. Results show that the dominant pattern of variability in DOM composition occurs at seasonal scales, likely associated with the seasonality of river discharge. After seasonal variations, long-term biodegradation was found to be comparatively more important in the fall, while tidal variability was the second most important factor correlated to DOM composition in spring, when the freshwater content in the estuary was high. Over shorter time scales, however, the influence of microbial processing was small. Microbial data revealed a similar pattern, with variability in gene expression occurring primarily at the seasonal scale and tidal influence being of secondary importance. Our analyses suggest that future changes in the seasonal delivery of freshwater to this system have the potential to significantly impact DOM composition. Changes in residence time may also be important, helping control the relative contribution of tides and long-term biodegradation to DOM compositional changes in the estuary.


2020 ◽  
Vol 19 (9) ◽  
pp. 2301-2312
Author(s):  
Zhi-jian ZHANG ◽  
Xian-zhe WANG ◽  
Lu-yi LIANG ◽  
En HUANG ◽  
Xing-hua TAO

RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 5785-5793
Author(s):  
Jiakai Gao ◽  
Zhaoyong Shi ◽  
Haiming Wu ◽  
Jialong Lv

Dissolved organic matter (DOM) plays a critical part in many processes of the ecological environment due to its mobility and reactivity in the soil and water interface.


Geoderma ◽  
2016 ◽  
Vol 261 ◽  
pp. 169-177 ◽  
Author(s):  
Marcella Sodano ◽  
Daniel Said-Pullicino ◽  
Antonio F. Fiori ◽  
Marcella Catoni ◽  
Maria Martin ◽  
...  

2014 ◽  
Vol 15 (2) ◽  
pp. 398 ◽  
Author(s):  
E. PITTA ◽  
C. ZERI ◽  
M. TZORTZIOU ◽  
E. DIMITRIOU ◽  
V. PARASKEVOPOULOU ◽  
...  

The objective of our study was to provide a comprehensive evaluation on C, N, P cycling in medium sized Mediterranean rivers, such as the Evros, experiencing multiple pressures (intensive agriculture, industrial activities, population density). Our work aims also to contribute to the development of integrated management policies. Dissolved organic matter (DOM) cycling were investigated, during a one-year study. It was shown that the organic component of N and P was comparable to those of large Mediterranean rivers (Rhone, Po). In the lower parts of the river where all point and non-point inputs converge, the high inorganic N input favour elevated assimilation rates by phytoplankton and result in increased chl-a concentrations and autochthonous dissolved organic matter (DOM) production during the dry season with limited water flow. Moreover, carbohydrate distribution revealed that there is a constant background of soil derived mono-saccharides on top of which are superimposed impulses of poly-saccharides during blooms. During the dry season, inorganic nutrients and DOM are trapped in the lower parts of the river, whereas during high flow conditions DOM is flushed towards the sea and organic nitrogen forms can become an important TDN constituent (at least 40%) transported to shelf waters. The co-existence of terrigenous material with autochthonous and some anthropogenic is supported by the relatively low DOC:DON and DOC:DOP ratios, the positive correlation of DOC vs chl-a and the decoupling between DOC and DON. Overall, this study showed that in medium size Mediterranean rivers, such as the Evros, intensive agriculture and pollution sources in combination with water management practices and climatic variability are important factors determining C, N, P dynamics and export to coastal seas. Also, it highlights the importance of the organic fraction of N and P when considering management practices.


Sign in / Sign up

Export Citation Format

Share Document