Design heuristics for semicontinuous separation processes with chemical reactions

2009 ◽  
Vol 87 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Thomas A. Adams ◽  
Warren D. Seider
Author(s):  
Richard Y. Chiou ◽  
Michael G. Mauk ◽  
Dharma T. Varapula ◽  
Senyu Wang ◽  
Carlos Ruiz ◽  
...  

Microsystems comprising microfluidic networks and miniaturized actuators, transducers, and sensors provide a convenient, revealing, and low-cost means for studying chemical reactions, separation processes such as filtration and extraction, phase changes, mixing, heat and mass transfer, and fluid flow phenomena. For instance, palm-sized plastic cartridges or cassettes (‘chips’) with channels, chambers, manifolds and other components for flow control and fluid actuation can be instrumented with embedded thermocouples and pressure sensors, and operated with small Peltier coolers/heaters and programmable syringe pumps or microrotary pumps. With proper design, the on-chip microfluidic processes can also be imaged with CCD cameras (especially using fluorescent dyes and particles), and infrared thermal cameras for temperature profiling. Such image (including video) capture and processing affords much more data compared to point sensors such as thermocouples and pressure transducers, and can be directly compared with finite element modeling. These systems are effective vehicles for project-based learning in fluid mechanics, heat transfer, chemical reaction engineering, separation processes and other unit operations, process control, and various biotechnical operations such as enzymatic digestion, nucleic acid amplification, and sample fractionation. The chips are made as bonded laminates from patterned acrylic, polycarbonate, thin metal sheet, and many other material types. Students can quickly design (using CAD software such as SolidWorks™), simulate (using FEM programs such as Comsol) microfluidic platforms, that can be rapid prototyped with laser machining, 3D printing, CNC machining, soft lithography, engraving and printed circuit board fabrication methods with a turn-around time of 1 day. The chip is instrumented using LabView™ or an Arduino™ microcontroller for data acquisition and process control. These benchtop or desktop systems make only modest demands on the resources of educational institutions, due to their low cost and safety, and minimal waste generation and reagent consumption. Also, their multidisciplinary nature affords an excellent opportunity for students to integrate their knowledge of CAD, simulation, prototyping, instrumentation and microcontrollers, statistical data analysis, and image processing and analysis. Further, these experiments give students a high level of hands on interaction and visualization of important unit operation processes. We discuss in detail some representative systems for heat exchangers, mixers, chemical reactors, and crystal growth, and their use as educational, project-based modules in the undergraduate engineering curriculum.


Author(s):  
C.E. Voegele-Kliewer ◽  
A.D. McMaster ◽  
G.W. Dirks

Materials other than polymers, e.g. ceramic silicates, are currently being investigated for gas separation processes. The permeation characteristics of one such material, Vycor (Corning Glass #1370), have been reported for the separation of hydrogen from hydrogen iodide. This paper will describe the electron microscopy techniques applied to reveal the porous microstructure of a Vycor membrane. The application of these techniques has led to an increased understanding in the relationship between the substructure and the gas transport properties of this material.


Author(s):  
H.H. Rotermund

Chemical reactions at a surface will in most cases show a measurable influence on the work function of the clean surface. This change of the work function δφ can be used to image the local distributions of the investigated reaction,.if one of the reacting partners is adsorbed at the surface in form of islands of sufficient size (Δ>0.2μm). These can than be visualized via a photoemission electron microscope (PEEM). Changes of φ as low as 2 meV give already a change in the total intensity of a PEEM picture. To achieve reasonable contrast for an image several 10 meV of δφ are needed. Dynamic processes as surface diffusion of CO or O on single crystal surfaces as well as reaction / diffusion fronts have been observed in real time and space.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


1883 ◽  
Vol 15 (366supp) ◽  
pp. 5844-5844
Author(s):  
MM. Jules Lefort ◽  
P. Thibault

Sign in / Sign up

Export Citation Format

Share Document