Reduction of clean fracturing fluid filtration loss by viscosity enhancement using nanoparticles: Is it feasible?

2020 ◽  
Vol 156 ◽  
pp. 414-424
Author(s):  
Caili Dai ◽  
Yuan Li ◽  
Qichao Xie ◽  
Ke Xu ◽  
Yong Hu ◽  
...  
2021 ◽  
Vol 58 (2) ◽  
pp. 121-126
Author(s):  
R. M. Farag ◽  
A. M. Salem ◽  
A. A. El-Midany ◽  
S. E. El-Mofty

Abstract Invasion of fluids into porous media during drilling can lead to irreparable damage and reduced well productivity. Hence, minimizing the filtration loss of the drilling fluid into the formation is very important. The stability of colloidal suspensions plays a crucial role in controlling the interfacial forces and consequently on minimizing the filtration. The zeta potential is an indicator of the stability of colloids with respect to their electrostatic interactions. In this study, the rheological properties of bentonite suspensions are investigated with and without additives. The starch and CMC were used as additives to enhance the rheological properties of bentonite. The effects of these additives on the drilling fluid filtration were examined. Zeta-potential, viscosity, gel strength and yield point were measured to characterize the extent to which control of the filtration loss of the drilling fluids can be achieved. The zeta-potential and the amount of filtration loss of water-bentonite suspensions were correlated. Finally, the results showed that the addition of either starch or carboxymethyl cellulose (CMC) enhances the filtration properties of water-bentonite suspensions.


2021 ◽  
Author(s):  
Wenguang Duan ◽  
Baojiang Sun ◽  
Deng Pan ◽  
Jianchun Xu ◽  
Jian Liu

Abstract The shale oil reservoir in Jimusaer has the characteristics of low porosity and low permeability, resulting in significant resistance in oil flow compared with conventional oil reservoirs. Fracturing is needed to increase shale oil production. Supercritical CO2 (SC-CO2) is an ideal choice for fracturing fluid due to its unique physical and chemical properties. SC-CO2 fracturing is able to make CO2 flow into microfractures and greatly reduce the pumping pressure. New progress has been made in the application of the supercritical CO2 fracturing technology in Jimusaer. A phase control model of SC-CO2 fracturing as a function of temperature and pressure is established, which takes into account the SC-CO2 features, intrinsic energy, flow behavior in fracture and fluid filtration. In this paper, the influences of injection pressure and temperature, injection rate, temperature-pressure field, temperature gradient, and phase behavior are analyzed extensively, in addition, the phase control model and its chart of fracture are presented. The proppant accumulation height reduces by a small amount with the increase of the fracturing fluid injection rate. It is necessary to improve the proppant pumping technology by the sand embankment section and proppant concentration. The liquid transforms into supercritical fluid, when flowing in wellbores and fractures. Different fractures have different phase points, and a lower injection temperature is affected by higher injection rate, lower temperature gradient and closer position from transformation point to the end of fracture. Therefore, in order to achieve a better fracturing effect, the injection temperature, pressure, and rate need to be optimized by surface equipment according to the reservoir conditions, to control the phase behavior of CO2. We built a phase control model for the SC-CO2 fracturing technology, which considers temperature control. We also developed some new techniques to improve SC-CO2 fracturing which is critically needed in the Jimusaer oilfield.


2014 ◽  
Vol 1006-1007 ◽  
pp. 152-155
Author(s):  
Bo Xiao ◽  
Rui Ma

Based on weighted agent sodium chloride, this study introduces a high density and high temperature tolerant fracturing fluid. According to the evaluation of the effect of weighted agent on the performance of base fluid and crosslinked fluid, conclusions can be got as follows. Introduction of weighted agent provides an auxiliary viscosity enhancement of the base fluid to some extent. Meanwhile, the crosslinked time is prolonged and gel breaking becomes more difficult owing to the interference effect of metal ions exerted on the crosslinking process between molecular chains of guar and crosslinker. Moreover, the experiments show that the novel fluid system has a strong tolerance of high temperature and high shearing rate. The viscosity of the fluid system with 15% weighted agent sodium chloride can maintain 160 mPa•s after 120 min shearing at 170 s-1under the temperature of 150 °C. The excellent performance of the fluid system ensures it has a good stimulation effect in the fracturing treatment in the deep and high temperature formation stimulation treatment.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Long Chang ◽  
Hongkui Ge ◽  
Yinghao Shen ◽  
Zehui Huang ◽  
Qian Zhang

The microscopic interaction mechanism between working fluids and shale reservoirs is the key basic issue for the efficient development of shale gas. The initial water saturation of clay-rich shale is low, and the water absorption through strong chemical osmosis is an important factor for the wellbore instability of the drilling fluid filtration loss and the low flowback rate of hydraulic fracturing. Membrane efficiency is a key parameter in evaluating the mechanical-chemical coupling of shale-fluid interaction. Because microcracks develop in reservoir shale, pressure transfer experiments are no longer capable of obtaining membrane efficiency value. In this paper, the characteristics of shale water saturation are considered. The model calculating membrane efficiency is obtained, and the shale membrane efficiency of the reservoir studied, based on the triple-layer model of clay mineral-water interface electrochemistry. Membrane efficiency of unsaturated shale depends on the excess charge density of the surface of the solid in different water saturations. The analysis of factors influencing shale membrane efficiency in unsaturated reservoirs shows that the shale membrane efficiency decreases with the increase of water saturation under unsaturated conditions. The partition coefficient of counterion in the Stern layer, cation exchange capacity, and solute concentration in pore fluid will affect the membrane efficiency of unsaturated shale. The membrane efficiency of the reservoir section shale in Fuling area is calculated and analyzed, and the water-absorbing capacity by chemical osmosis of the reservoir interval shale is evaluated based on the membrane efficiency model of unsaturated shale.


Author(s):  
Sun Bin ◽  
Zeng Wenting ◽  
Zhang Shuling ◽  
Chen Dong ◽  
Peng Hongzhao

2013 ◽  
Author(s):  
Mingguang Che ◽  
Yonghui Wang ◽  
Xingsheng Cheng ◽  
Yongjun Lu ◽  
Yongping Li ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. 126-134
Author(s):  
A.M. Ilyasov

Based on the generalized Perkins-Kern-Nordgren model (PKN) for the development of a hyperbolic type vertical hydraulic fracture, an exact solution is obtained for the hydraulic fracture self-oscillations after terminating the fracturing fluid injection. These oscillations are excited by a rarefaction wave that occurs after the injection is stopped. The obtained solution was used to estimate the height, width and half-length of the hydraulic fracture at the time of stopping the hydraulic fracturing fluid injection based on the bottomhole pressure gauge data.


2019 ◽  
Vol 12 (24) ◽  
Author(s):  
Lijun You ◽  
Yang Zhou ◽  
Yili Kang ◽  
Bin Yang ◽  
Zhongyu Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document