Template-bayesian approach for the evaluation of melt pool shape and dimension of a DED-process from in-situ X-ray images

CIRP Annals ◽  
2021 ◽  
Author(s):  
Adrian Lindenmeyer ◽  
Samantha Webster ◽  
Michael F. Zaeh ◽  
Kornel F. Ehmann ◽  
Jian Cao
Keyword(s):  
X Ray ◽  
2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Sarah J. Wolff ◽  
Benjamin Gould ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Aaron Greco ◽  
...  

Abstract In laser melting processes of metallic parts, including welding and additive manufacturing, there are challenges in porosity formation and developing predictive multiphysics of the process. Surrounding a melt pool with an external magnetic field has promise in changing the Marangoni flow and reducing porosity formation. In-situ X-ray imaging enables the observation of melt pool behavior and porosity formation in real-time. This preliminary study shows that an external magnetic field can achieve both, with potential to scale up in industrial processes and to validate multiphysics models.


2021 ◽  
Vol 286 ◽  
pp. 129205
Author(s):  
Yunhui Chen ◽  
Samuel J. Clark ◽  
Yuze Huang ◽  
Lorna Sinclair ◽  
Chu Lun Alex Leung ◽  
...  

2019 ◽  
Vol 179 ◽  
pp. 107899 ◽  
Author(s):  
Changsheng Xu ◽  
Ning Guo ◽  
Xin Zhang ◽  
Haiyue Jiang ◽  
Hao Chen ◽  
...  
Keyword(s):  
X Ray ◽  

2018 ◽  
Vol 25 (5) ◽  
pp. 1467-1477 ◽  
Author(s):  
Niranjan D. Parab ◽  
Cang Zhao ◽  
Ross Cunningham ◽  
Luis I. Escano ◽  
Kamel Fezzaa ◽  
...  

The high-speed synchrotron X-ray imaging technique was synchronized with a custom-built laser-melting setup to capture the dynamics of laser powder-bed fusion processes in situ. Various significant phenomena, including vapor-depression and melt-pool dynamics and powder-spatter ejection, were captured with high spatial and temporal resolution. Imaging frame rates of up to 10 MHz were used to capture the rapid changes in these highly dynamic phenomena. At the same time, relatively slow frame rates were employed to capture large-scale changes during the process. This experimental platform will be vital in the further understanding of laser additive manufacturing processes and will be particularly helpful in guiding efforts to reduce or eliminate microstructural defects in additively manufactured parts.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


1997 ◽  
Vol 7 (C2) ◽  
pp. C2-619-C2-620 ◽  
Author(s):  
M. Giorgett ◽  
I. Ascone ◽  
M. Berrettoni ◽  
S. Zamponi ◽  
R. Marassi

2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Sign in / Sign up

Export Citation Format

Share Document