scholarly journals Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems

2019 ◽  
Vol 7 (6) ◽  
pp. 750-760 ◽  
Author(s):  
Sridevi Nakka ◽  
Mithila Jugulam ◽  
Dallas Peterson ◽  
Mohammad Asif
2019 ◽  
Vol 6 (1) ◽  
pp. 387-409 ◽  
Author(s):  
Roger A.C. Jones ◽  
Rayapati A. Naidu

Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.


2009 ◽  
Vol 89 (1) ◽  
pp. 141-167 ◽  
Author(s):  
Lyle F Friesen ◽  
Hugh J Beckie ◽  
Suzanne I Warwick ◽  
Rene C Van Acker

Kochia [Kochia scoparia (L.) Schrad.] is an annual broadleaf weed species native to Eurasia and introduced as an ornamental to the Americas by immigrants in the mid- to late 1800s. Although sometimes categorized in the genus Bassia, there is no compelling reason for this classification. This naturalized species is a common and economically important weed in crop production systems and ruderal areas in semiarid to arid regions of North America, and has expanded northward in the Canadian Prairies during the past 30 yr. Although primarily self-pollinated, substantial pollen-mediated gene flow and efficient seed dispersal aids both short- and long-distance spread. The weed is morphologically highly variable, and its growth and development are markedly affected by environmental conditions. Kochia, a C4 species, is highly competitive in cropping systems because of its ability to germinate at low soil temperatures and emerge early, grow rapidly, tolerate heat, drought and salinity, and exert allelopathic effects on neighboring species. Moreover, herbicidal control has been compromised to some extent by the widespread evolution of herbicide resistance in the species. Kochia is used as a forage, is palatable to livestock with nutritional value similar to that of alfalfa (Medicago sativa), but can be toxic if it comprises the majority of the diet. Although kochia pollen is an allergen, the seed is a source of phytochemicals including mosquito pheromones and saponins that are potentially beneficial to human health; kochia also is beneficial in phytoremediation of soils contaminated by hydrocarbons or pesticides. Key words: Kochia, Kochia scoparia, Bassia scoparia, herbicide resistance, soil salinity tolerance, weed biology


2013 ◽  
Vol 27 (1) ◽  
pp. 190-192 ◽  
Author(s):  
Daniel C. Brainard ◽  
Erin Haramoto ◽  
Martin M. Williams ◽  
Steven Mirsky

Reduced-tillage systems including no-tillage and striptillage have well-known benefits for conserving and improving soils, protecting vulnerable crops from extreme weather events, and reducing labor and fuel costs associated with full-width inversion tillage (Franzluebbers 2002, 2005; Parsch et al. 2001; Pesant et al. 1987; Spargo et al. 2008). Despite these benefits, reduced-tillage has not been widely adopted in many cropping systems due in part to the increased difficulty of managing weeds when tillage is not used. Not surprisingly, adoption of reduced-tillage has occurred primarily in crops for which low-cost, effective herbicides are available, including glyphosate-resistant soybean [Glycine max (L.) Merr.], corn (Zea mays L.), cotton (Gossypium hirsutum L.), and sugarbeets (Beta vulgaris L.) (Horowitz et al. 2010; Tarkalson et al. 2012). Increased use of a narrow range of herbicides in these cropping systems has exacerbated problems of herbicide resistance (Duke and Powles 2009; Heap 2012). Conversely, adoption of reduced-tillage has been limited in crops where effective herbicides are not available (e.g. in “minor crops” like vegetables) or prohibited (e.g. in organic production systems). Research aimed at identifying nonchemical approaches to managing weeds in reduced-tillage production systems has the potential to increase adoption of reducedtillage while minimizing herbicide use and selection pressure for herbicide resistance in production systems currently using reduced tillage (Figure 1).


1992 ◽  
Vol 6 (3) ◽  
pp. 665-668 ◽  
Author(s):  
Donald L. Wyse

The development of crop cultivars with resistance to selected herbicides has the potential to impact environmental quality, food safety, consumers, and crop producers in either a positive or negative manner. The technology that makes it possible to develop herbicide-resistant crops is neither good nor bad, it is rather how the products of this technology are used that will determine whether or not the introduction of herbicide-resistant crops is ultimately a good or bad decision. The introduction of herbicide-resistant crops will have diverse impacts leading to redundancy, diversity, and confusion in crop production systems. Often the introduction of herbicide-resistant cultivars will have the same impact on cropping systems as the introduction of a new herbicide that has the same mode-of-action and use pattern of herbicides already in use. This may add diversity of herbicide options for a given crop but will cause redundancy of product use over several years. This redundancy could lead to weed resistance and water quality concerns. Confusion at the user level will exist because not all cultivars of a crop will be resistant to the herbicide; this could be the major deterrent to widespread adoption of herbicide-resistant crops. Steps must be taken to provide information to crop producers that will insure that herbicide-resistant crops are used effectively and safely. Weed scientists will determine whether this technology will be used to improve food safety, water quality, crop production systems, and farmer profitability or have a negative impact on agriculture and the whole of society.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 337 ◽  
Author(s):  
Vijay K. Nandula

This article reviews, focusing on maize and soybean, previous efforts to develop nontransgenic herbicide-resistant crops (HRCs), currently available transgenic HRC traits and technologies, as well as future chemical weed management options over the horizon. Since the mid twentieth century, herbicides rapidly replaced all other means of weed management. Overreliance on ‘herbicide-only’ weed control strategies hastened evolution of HR weed species. Glyphosate-resistant (GR) crop technology revolutionized weed management in agronomic crops, but GR weeds, led by Palmer amaranth, severely reduced returns from various cropping systems and affected the bottom line of growers across the world. An additional problem was the lack of commercialization of a new herbicide mode of action since the 1990s. Auxinic HRCs offer a short-term alternative for management of GR Palmer amaranth and other weed species. New HRCs stacked with multiple herbicide resistance traits and at least two new herbicide modes of action expected to be available in the mid-2020s provide new chemical options for weed management in row crops in the next decade.


2020 ◽  
Vol 34 (3) ◽  
pp. 424-430
Author(s):  
James T. Brosnan ◽  
Matthew T. Elmore ◽  
Muthukumar V. Bagavathiannan

AbstractHerbicide-resistant weeds pose a severe threat to sustainable vegetation management in various production systems worldwide. The majority of the herbicide resistance cases reported thus far originate from agronomic production systems where herbicide use is intensive, especially in industrialized countries. Another notable sector with heavy reliance on herbicides for weed control is managed turfgrass systems, particularly golf courses and athletic fields. Intensive use of herbicides, coupled with a lack of tillage and other mechanical tools that are options in agronomic systems, increases the risk of herbicide-resistant weeds evolving in managed turfgrass systems. Among the notable weed species at high risk for evolving resistance under managed turf systems in the United States are annual bluegrass, goosegrass, and crabgrasses. The evolution and spread of multiple herbicide resistance, an emerging threat facing the turfgrass industry, should be addressed with the use of diversified management tools. Target-site resistance has been reported commonly as a mechanism of resistance for many herbicide groups, though non–target site resistance is an emerging concern. Despite the anecdotal evidence of the mounting weed resistance issues in managed turf systems, the lack of systematic and periodic surveys at regional and national scales means that confirmed reports are very limited and sparse. Furthermore, currently available information is widely scattered in the literature. This review provides a concise summary of the current status of herbicide-resistant weeds in managed turfgrass systems in the United States and highlights key emerging threats.


2018 ◽  
Vol 32 (4) ◽  
pp. 475-488 ◽  
Author(s):  
Jill Schroeder ◽  
Michael Barrett ◽  
David R. Shaw ◽  
Amy B. Asmus ◽  
Harold Coble ◽  
...  

AbstractHerbicide resistance is ‘wicked’ in nature; therefore, results of the many educational efforts to encourage diversification of weed control practices in the United States have been mixed. It is clear that we do not sufficiently understand the totality of the grassroots obstacles, concerns, challenges, and specific solutions needed for varied crop production systems. Weed management issues and solutions vary with such variables as management styles, regions, cropping systems, and available or affordable technologies. Therefore, to help the weed science community better understand the needs and ideas of those directly dealing with herbicide resistance, seven half-day regional listening sessions were held across the United States between December 2016 and April 2017 with groups of diverse stakeholders on the issues and potential solutions for herbicide resistance management. The major goals of the sessions were to gain an understanding of stakeholders and their goals and concerns related to herbicide resistance management, to become familiar with regional differences, and to identify decision maker needs to address herbicide resistance. The messages shared by listening-session participants could be summarized by six themes: we need new herbicides; there is no need for more regulation; there is a need for more education, especially for others who were not present; diversity is hard; the agricultural economy makes it difficult to make changes; and we are aware of herbicide resistance but are managing it. The authors concluded that more work is needed to bring a community-wide, interdisciplinary approach to understanding the complexity of managing weeds within the context of the whole farm operation and for communicating the need to address herbicide resistance.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


Sign in / Sign up

Export Citation Format

Share Document