scholarly journals Global Dimensions of Plant Virus Diseases: Current Status and Future Perspectives

2019 ◽  
Vol 6 (1) ◽  
pp. 387-409 ◽  
Author(s):  
Roger A.C. Jones ◽  
Rayapati A. Naidu

Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.

Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2017 ◽  
Vol 32 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Stephen B. Powles

AbstractIn Australia, widespread evolution of multi-resistant weed populations has driven the development and adoption of harvest weed seed control (HWSC). However, due to incompatibility of commonly used HWSC systems with highly productive conservation cropping systems, better HWSC systems are in demand. This study aimed to evaluate the efficacy of the integrated Harrington Seed Destructor (iHSD) mill on the seeds of Australia’s major crop weeds during wheat chaff processing. Also examined were the impacts of chaff type and moisture content on weed seed destruction efficacy. Initially, the iHSD mill speed of 3,000 rpm was identified as the most effective at destroying rigid ryegrass seeds present in wheat chaff. Subsequent testing determined that the iHSD mill was highly effective (>95% seed kill) on all Australian crop weeds examined. Rigid ryegrass seed kill was found to be highest for lupin chaff and lowest in barley, with wheat and canola chaff intermediate. Similarly, wheat chaff moisture reduced rigid ryegrass seed kill when moisture level exceeded 12%. The broad potential of the iHSD mill was evident, in that the reductions in efficacy due to wide-ranging differences in chaff type and moisture content were relatively small (≤10%). The results from these studies confirm the high efficacy and widespread suitability of the iHSD for use in Australian crop production systems. Additionally, as this system allows the conservation of all harvest residues, it is the best HWSC technique for conservation cropping systems.


2020 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
Sarah L. Strauss

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-9
Author(s):  
Alan J Schlegel ◽  
Yared Assefa ◽  
Daniel O’Brien

Abstract. Selection of optimal crops and cropping systems for most efficient water use specific for local environments can improve global water security. Limited irrigation with ground water is one alternative to alleviate crops from low amount or unevenly distributed water in the growing seasons in semi-arid regions. The main objectives of this research were to quantify yield-water use relationships of three limited irrigated crops, determine effect of crop selection on profitability with limited irrigation, and identify profitable and alternative crop production systems. A field study was conducted at the Kansas State University Southwest Research-Extension Center near Tribune, Kansas, from 2012 through 2017. There were four treatments in the study, two 1-yr systems of continuous corn ( L.) (C-C) and continuous grain sorghum (L.) (GS-GS) and two 2-yr rotations of corn-grain sorghum (C-GS) and corn-winter wheat ( L.) (C-W). Overall corn yield after wheat (C-W) was about 1.4 Mg (ha)-1 greater than C-C. Corn and sorghum yields were similar grown as monoculture or in rotation with each other. Available soil water at corn planting and during the growing season were 20 to 40 mm (240 cm profile-1) less in the C-GS rotation compared with C-C and C-W rotations. Corn yield increased as water use (yield-water use) increased in C-W rotation but yield-water use relationships tended to be negative in C-C and C-GS rotations. Grain sorghum yield increased with water use in both rotations but at a greater rate in GS-GS compared with C-GS. Despite greater corn grain yield in C-W, our economic analysis showed that wheat was the least profitable of the three crops causing the C-W rotation to be least profitable. In this study, the most profitable limited irrigation crop rotation was corn-grain sorghum (C-GS). Keywords: Corn-sorghum-wheat, Crop rotation, Limited irrigation, Profitability, Supplementary irrigation, Sustainability.


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 47
Author(s):  
Huan Zhang ◽  
Markus Flury ◽  
Carol Miles ◽  
Hang Liu ◽  
Lisa DeVetter

Soil-biodegradable plastic mulches (BDMs) are made from biodegradable materials that can be bio-based, synthetic, or a blend of these two types of polymers, which are designed to degrade in soil through microbial activities. The purpose of BDMs is to reduce agricultural plastic waste by replacing polyethylene (PE) mulch, which is not biodegradable. Most studies have evaluated the breakdown of BDMs within annual production systems, but knowledge of BDM breakdown in perennial systems is limited. The objective of this study was to evaluate the deterioration and degradation of BDMs in a commercial red raspberry (Rubus ideaus L.) production system. Deterioration was low (≤11% percent soil exposure; PSE) for all mulches until October 2017 (five months after transplanting, MAT). By March 2018 (10 MAT), deterioration reached 91% for BDMs but remained low for PE mulch (4%). Mechanical strength also was lower for BDMs than PE mulch. In a soil burial test in the raspberry field, 91% of the BDM area remained after 18 months. In-soil BDM degradation was minimal, although the PSE was high. Since mulch is only applied once in a perennial crop production system, and the lifespan of the planting may be three or more years, it is worth exploring the long-term degradation of BDMs in perennial cropping systems across diverse environments.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1022
Author(s):  
Ireri Alejandra Carbajal-Valenzuela ◽  
Gabriela Medina-Ramos ◽  
Laura Helena Caicedo-Lopez ◽  
Alejandra Jiménez-Hernández ◽  
Adrian Esteban Ortega-Torres ◽  
...  

Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.


2020 ◽  
Vol 12 (9) ◽  
pp. 3901 ◽  
Author(s):  
Amir Behzad Bazrgar ◽  
Aeryn Ng ◽  
Brent Coleman ◽  
Muhammad Waseem Ashiq ◽  
Andrew Gordon ◽  
...  

Enhancement of terrestrial carbon (C) sequestration on marginal lands in Canada using bioenergy crops has been proposed. However, factors influencing system-level C gain (SLCG) potentials of maturing bioenergy cropping systems, including belowground biomass C and soil organic carbon (SOC) accumulation, are not well documented. This study, therefore, quantified the long-term C sequestration potentials at the system-level in nine-year-old (2009–2018) woody (poplar clone 2293–29 (Populus spp.), hybrid willow clone SX-67 (Salix miyabeana)), and herbaceous (miscanthus (Miscanthus giganteus var. Nagara), switchgrass (Panicum virgatum)) bioenergy crop production systems on marginal lands in Southern Ontario, Canada. Results showed that woody cropping systems had significantly higher aboveground biomass C stock of 10.02 compared to 7.65 Mg C ha−1 in herbaceous cropping systems, although their belowground biomass C was not significantly different. Woody crops and switchgrass were able to increase SOC significantly over the tested period. However, when long term soil organic carbon (∆SOC) gains were compared, woody and herbaceous biomass crops gained 11.0 and 9.8 Mg C ha−1, respectively, which were not statistically different. Results also indicate a significantly higher total C pool [aboveground + belowground + soil organic carbon] in the willow (103 Mg ha−1) biomass system compared to other bioenergy crops. In the nine-year study period, woody crops had only 1.35 Mg C ha−1 more SLCG, suggesting that the influence of woody and herbaceous biomass crops on SLCG and ∆SOC sequestrations were similar. Further, among all tested biomass crops, willow had the highest annual SLCG of 1.66 Mg C ha−1 y−1.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Keston O. W. Njira ◽  
Ernest Semu ◽  
Jerome P. Mrema ◽  
Patson C. Nalivata

Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.


2016 ◽  
Vol 106 (3) ◽  
pp. 216-225 ◽  
Author(s):  
D. O. Chellemi ◽  
A. Gamliel ◽  
J. Katan ◽  
K. V. Subbarao

Biological suppression of soilborne diseases with minimal use of outside interventive actions has been difficult to achieve in high input conventional crop production systems due to the inherent risk of pest resurgence. This review examines previous approaches to the management of soilborne disease as precursors to the evolution of a systems-based approach, in which plant disease suppression through natural biological feedback mechanisms in soil is incorporated into the design and operation of cropping systems. Two case studies are provided as examples in which a systems-based approach is being developed and deployed in the production of high value crops: lettuce/strawberry production in the coastal valleys of central California (United States) and sweet basil and other herb crop production in Israel. Considerations for developing and deploying system-based approaches are discussed and operational frameworks and metrics to guide their development are presented with the goal of offering a credible alternative to conventional approaches to soilborne disease management.


Sign in / Sign up

Export Citation Format

Share Document