A microscopic study of MHD fractional inertial flow through Forchheimer medium

2017 ◽  
Vol 55 (4) ◽  
pp. 1690-1703 ◽  
Author(s):  
Muhammad Shoaib Anwar ◽  
Amer Rasheed
Author(s):  
K. Yazdchi ◽  
S. Srivastava ◽  
S. Luding

Many important natural processes involving flow through porous media are characterized by large filtration velocity. Therefore, it is important to know when the transition from viscous to the inertial flow regime actually occurs in order to obtain accurate models for these processes. In this paper, a detailed computational study of laminar and inertial, incompressible, Newtonian fluid flow across an array of cylinders is presented. Due to the non-linear contribution of inertia to the transport of momentum at the pore scale, we observe a typical departure from Darcy’s law at sufficiently high Reynolds number (Re). Our numerical results show that the weak inertia correction to Darcy’s law is not a square or a cubic term in velocity, as it is in the Forchheimer equation. Best fitted functions for the macroscopic properties of porous media in terms of microstructure and porosity are derived and comparisons are made to the Ergun and Forchheimer relations to examine their relevance in the given porosity and Re range. The results from this study can be used for verification and validation of more advanced models for particle fluid interaction and for the coupling of the discrete element method (DEM) with finite element method (FEM).


Author(s):  
RR Baker

AbstractInherently porous cigarette paper consists of an interlocking network of cellulose fibres interspersed with chalk particles. Spaces in this matrix are of the order of 1 AAµm wide which is small compared to the paper thickness (usually 20 AAµm to 40 AAµm). However, when cigarette paper is perforated after the paper-making process, e.g. by an electrostatic or mechanical process, the perforation holes are relatively large, usually having mean diameters of the same order of magnitude as the paper thickness. The total flow of air through perforated cigarette paper thus consists of two components: viscous flow through the porous structure of the paper inherent from the paper-making process, and inertial flow through the perforation holes. Since the air flow / pressure relationships due to these two components of flow differ and since the two components are additive, the total flow through perforated paper may be expressed as: Q = Z A P + Z’ A Pn, where Q is the air flow (cm3 min-1), A is the area of paper (cm2) exposed to the flowing air, P is the pressure difference across the paper (kilopascal), Z is the base permeability of the paper due to viscous flow through the spaces inherent from the paper-making process (cm min-1 kPa-1 or Coresta unit), Z’ is the permeability of the paper due to inertial flow through the perforation holes (cm min-1 kPa-1/n) and n is a constant for a given set of perforation holes. This equation adequately describes gas flow through a variety of perforated cigarette and tipping papers. By using different gases, it is confirmed that Z depends on viscous forces and Z’ depends on inertial forces. By examining the flow of air through a large number of papers with perforation holes of different sizes, it is shown that Z’ is dependent on the total area of perforation holes, and that a jet-contraction effect occurs as the air travels through the paper. The parameter n is shown to have a value between 0.5 and 1.0, and this value is related to mean perforation-hole size. The permeability of cigarette paper is defined as the flow of air through the paper when the pressure across the paper is 1 kilopascal. Thus from the above equation the “total permeability” of perforated cigarette paper is equal to Z + Z'.


Author(s):  
Glennelle Washington ◽  
Philip P. McGrath ◽  
Peter R. Graze ◽  
Ivor Royston

Herpes-like viruses were isolated from rhesus monkey peripheral blood leucocytes when co-cultivated with WI-38 cells. The virus was originally designated rhesus leucocyte-associated herpesvirus (LAHV) and subsequently called Herpesvirus mulatta (HVM). The original isolations were from juvenile rhesus monkeys shown to be free of antibody to rhesus cytomegalic virus. The virus could only be propagated in human or simian fibroblasts. Use of specific antisera developed from HVM showed no relationship between this virus and other herpesviruses. An electron microscopic study was undertaken to determine the morphology of Herpesvirus mulatta (HVM) in infected human fibroblasts.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Investigation of the spontaneous pituitary adenomas in rat have been limited mainly to light microscopic study. Furth et al. (1973) described them as chromophobic, secreting prolactin. Kovacs et al. (1977) in an ul trastructural investigation of adenomas of old female Long-Evans rats, found that they were composed of prolactin cells. Berkvens et al. (1980) using immunocytochemistry at the light microscopic level, demonstrated that some spontaneous tumors of old Wistar rats could contain GH, TSH or ACTH as well as PRL.


Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


Author(s):  
M. J. Kramer ◽  
Alan L. Coykendall

During the almost 50 years since Streptococcus mutans was first suggested as a factor in the etiology of dental caries, a multitude of studies have confirmed the cariogenic potential of this organism. Streptococci have been isolated from human and animal caries on numerous occasions and, with few exceptions, they are not typable by the Lancefield technique but are relatively homogeneous in their biochemical reactions. An analysis of the guanine-cytosine (G-C) composition of the DNA from strains K-1-R, NCTC 10449, and FA-1 by one of us (ALC) revealed significant differences and DNA-DNA reassociation experiments indicated that genetic heterogeneity existed among the three strains. The present electron microscopic study had as its objective the elucidation of any distinguishing morphological characteristics which might further characterize the respective strains.


Author(s):  
Richard L. Leino ◽  
Jon G. Anderson ◽  
J. Howard McCormick

Groups of 12 fathead minnows were exposed for 129 days to Lake Superior water acidified (pH 5.0, 5.5, 6.0 or 6.5) with reagent grade H2SO4 by means of a multichannel toxicant system for flow-through bioassays. Untreated water (pH 7.5) had the following properties: hardness 45.3 ± 0.3 (95% confidence interval) mg/1 as CaCO3; alkalinity 42.6 ± 0.2 mg/1; Cl- 0.03 meq/1; Na+ 0.05 meq/1; K+ 0.01 meq/1; Ca2+ 0.68 meq/1; Mg2+ 0.26 meq/1; dissolved O2 5.8 ± 0.3 mg/1; free CO2 3.2 ± 0.4 mg/1; T= 24.3 ± 0.1°C. The 1st, 2nd and 3rd gills were subsequently processed for LM (methacrylate), TEM and SEM respectively.Three changes involving chloride cells were correlated with increasing acidity: 1) the appearance of apical pits (figs. 2,5 as compared to figs. 1, 3,4) in chloride cells (about 22% of the chloride cells had pits at pH 5.0); 2) increases in their numbers and 3) increases in the % of these cells in the epithelium of the secondary lamellae.


Author(s):  
L.A. Dell

A new method has been developed which readily offers the microscopist a possibility for both light and electron microscopic study of selected cells from the cerebrospinal fluid. Previous attempts to examine these cells in the spinal fluid at the ultrastructural level were based on modifications of cell pellet techniques developed for peripheral blood. These earlier methods were limited in application by the number of cells in spinal fluid required to obtain a sufficient size pellet and by the lack of an easy method of cellular identification between the light and electron microscopic level. The newly developed method routinely employs microscope slides coated with Siliclad and tungsten oxide for duplicate cytocentrifuge preparations of diagnostic spinal fluid specimens. Work done by Kushida and Suzuki provided a basis for our use of the metal oxide.


Sign in / Sign up

Export Citation Format

Share Document