Oxidative stress biomarkers in four Bloom syndrome (BS) patients and in their parents suggest in vivo redox abnormalities in BS phenotype

2007 ◽  
Vol 40 (15) ◽  
pp. 1100-1103 ◽  
Author(s):  
Adriana Zatterale ◽  
Frank J. Kelly ◽  
Paolo Degan ◽  
Marco d'Ischia ◽  
Federico V. Pallardó ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alireza Rezaeinezhad ◽  
Pegah Eslami ◽  
Hossein Mirmiranpour ◽  
Hamid Ghomi

AbstractCold atmospheric plasma (CAP) is known as the versatile tool in different biological, and medical applications. In this study, we investigated the effect of cold plasma on diabetes via in vitro and in vivo assessments. We performed the in vitro assay to evaluate the impact of CAP on glycated glutathione peroxidase (GPx) through enzyme activity measurement as a function index and far- and near-UV circular dichroism (CD) and fluorescence analysis as structure indices. The result of in vitro assessment showed that the exposure of glycated GPx to plasma causes a considerable increase in enzyme activity up to 30%. Also, the evaluation of far- and near-UV CD and fluorescence analysis indicated a modification in the protein structure. According to obtained result from in vitro assessment, in vivo assay evaluated the effect of CAP on diabetic mice through analyzing of blood glucose level (BGL), advanced glycation end products (AGEs), antioxidant activity, oxidative stress biomarkers such as malondialdehyde (MDA), advanced oxidation protein products (AOPP), and oxidized low-density lipoprotein (oxLDL), and inflammation factors including tumor necrosis factor (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). The result of in vivo experiment also showed a 20% increase in antioxidant activity. Also, the reduction in AGEs, oxidative stress biomarkers, and inflammatory cytokines concentrations was observed. The result of this study revealed that CAP could be useful in diabetes treatment and can be utilized as a complementary method for diabetes therapy.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3167
Author(s):  
Flavia Buonaurio ◽  
Maria Luisa Astolfi ◽  
Daniela Pigini ◽  
Giovanna Tranfo ◽  
Silvia Canepari ◽  
...  

Urinary concentrations of 16 different exposure biomarkers to metals were determined at the beginning and at the end of a working shift on a group of workers in the metal carpentry industry. Five different oxidative stress biomarkers were also measured, such as the oxidation products of RNA and DNA metabolized and excreted in the urine. The results of workers exposed to metals were compared to those of a control group. The metal concentrations found in these workers were well below the occupational exposure limit values and exceeded the mean concentrations of the same metals in the urine of the control group by a factor of four at maximum. Barium (Ba), mercury (Hg), lead (Pb) and strontium (Sr) were correlated with the RNA oxidative stress biomarker, 8-oxo-7, 8-dihydroguanosine (8-oxoGuo), which was found able to discriminate exposed workers from controls with a high level of specificity and sensitivity. The power of this early diagnostic technique was assessed by means of the ROC curve. Ba, rubidium (Rb), Sr, tellurium (Te), and vanadium (V) were correlated with the level of the protein oxidation biomarker 3-Nitrotyrosine (3-NO2Tyr), and Ba, beryllium (Be), copper (Cu), and Rb with 5-methylcytidine (5-MeCyt), an epigenetic marker of RNA damage. These effect biomarkers can help in identifying those workers that can be defined as “occupationally exposed” even at low exposure levels, and they can provide information about the impact that such doses have on their health.


Sign in / Sign up

Export Citation Format

Share Document