Temporal activation patterns of lateralized cognitive and task control processes in the human brain

2007 ◽  
Vol 118 (4) ◽  
pp. e34-e35
Author(s):  
R. Gobbelé ◽  
U. Stegelmeyer ◽  
T.D. Waberski ◽  
K.E. Stephan ◽  
K. Rache ◽  
...  
2008 ◽  
Vol 1205 ◽  
pp. 81-90 ◽  
Author(s):  
René Gobbelé ◽  
Kathrin Lamberty ◽  
Klaas E. Stephan ◽  
Ulrike Stegelmeyer ◽  
Helmut Buchner ◽  
...  

2006 ◽  
Vol 37 (01) ◽  
Author(s):  
R Gobbelé ◽  
U Stegelmeyer ◽  
TD Waberski ◽  
KE Stephan ◽  
K Rache ◽  
...  

Author(s):  
Payel Das ◽  
Brian Quanz ◽  
Pin-Yu Chen ◽  
Jae-wook Ahn ◽  
Dhruv Shah

Creativity, a process that generates novel and meaningful ideas, involves increased association between task-positive (control) and task-negative (default) networks in the human brain. Inspired by this seminal finding, in this study we propose a creative decoder within a deep generative framework, which involves direct modulation of the neuronal activation pattern after sampling from the learned latent space. The proposed approach is fully unsupervised and can be used off- the-shelf. Several novelty metrics and human evaluation were used to evaluate the creative capacity of the deep decoder. Our experiments on different image datasets (MNIST, FMNIST, MNIST+FMNIST, WikiArt and CelebA) reveal that atypical co-activation of highly activated and weakly activated neurons in a deep decoder promotes generation of novel and meaningful artifacts.


2017 ◽  
pp. 3-12
Author(s):  
Riitta Hari ◽  
Aina Puce

Neuronal communication in the brain is associated with minute electrical currents that give rise to both electrical potentials on the scalp (measurable by means of electroencephalography [EEG]) and magnetic fields outside the head (measurable by magnetoencephalography [MEG]). Both MEG and EEG are noninvasive neurophysiological methods used to study brain dynamics, that is temporal changes in the activation patterns, and sequences in signal progression. Differences between MEG and EEG mainly reflect differences in the spread of electric and magnetic fields generated by the same electric currents in the human brain. This chapter provides an overall description of the main principles of MEG and EEG and provides background for the following chapters in this and subsequent sections.


2011 ◽  
Vol 23 (4) ◽  
pp. 867-879 ◽  
Author(s):  
Darlene Floden ◽  
Antonino Vallesi ◽  
Donald T. Stuss

The ability to step outside a routine—to select a new response over a habitual one—is a cardinal function of the frontal lobes. A large body of neuroimaging work now exists pointing to increased activation within the anterior cingulate when stimuli evoke competing responses (incongruent trials) relative to when responses converge (congruent trials). However, lesion evidence that the ACC is necessary in this situation is inconsistent. We hypothesized that this may be a consequence of different task procedures (context) used in lesion and neuroimaging studies. The present study attempted to reconcile the lesion and the fMRI findings by having subjects perform clinical and experimental versions of the Stroop task during BOLD fMRI acquisition. We examined the relationship of brain activation patterns, specifically within the anterior cingulate and left dorsolateral frontal regions, to congruent and incongruent trial types in different task presentations or contexts. The results confirmed our hypothesis that ACC activity is relatively specific to unblocked–uncued incongruent Stroop conditions that have not been used in large neuropsychological studies. Moreover, the size of the behavioral Stroop interference effect was significantly correlated with activity in ACC and left dorsolateral regions, although in different directions. The current results are discussed in terms of previous proposals for the functional roles of these regions in activating, monitoring, and task setting, and the relation of these findings to the disparate reports in recent case series is considered.


2016 ◽  
Author(s):  
Richard H. Chen ◽  
Takuya Ito ◽  
Kaustubh R. Kulkarni ◽  
Michael W. Cole

AbstractMuch of our lives are spent in unconstrained rest states, yet cognitive brain processes are primarily investigated using task-constrained states. It may be possible to utilize the insights gained from experimental control of task processes as reference points for investigating unconstrained rest. To facilitate comparison of rest and task functional MRI (fMRI) data we focused on activation amplitude patterns, commonly used for task but not rest analyses. During rest, we identified spontaneous changes in temporally extended whole-brain activation pattern states. This revealed a hierarchical organization of rest states. The top consisted of two competing states consistent with previously identified “task-positive” and “task-negative” activation patterns. These states were composed of more specific states that repeated over time and across individuals. Contrasting with the view that rest consists of only task-negative states, task-positive states occurred 40% of the time while individuals “rested,” suggesting task-focused activity occurs during rest. Further, analysis of task data revealed a similar hierarchical structure of brain states. Together these results suggest brain activation dynamics form a general hierarchy across task and rest, with a small number of dominant general states reflecting basic functional modes and a variety of specific states likely reflecting a rich variety of cognitive processes.


2021 ◽  
pp. 1-47
Author(s):  
Mathieu Declerck ◽  
Gabriela Meade ◽  
Katherine J. Midgley ◽  
Phillip J. Holcomb ◽  
Ardi Roelofs ◽  
...  

Models vary in the extent to which language control processes are domain general. Those that posit that language control is at least partially domain general insist on an overlap between language control and executive control at the goal level. To further probe whether or not language control is domain general, we conducted the first event-related potential (ERP) study that directly compares language-switch costs, as an index of language control, and task-switch costs, as an index of executive control. The language switching and task switching methodology were identical, except that the former required switching between languages (English or Spanish) whereas the latter required switching between tasks (color naming or category naming). This design allowed us to directly compare control processes at the goal level (cue-locked ERPs) and at the task performance level (picture-locked ERPs). We found no significant differences in the switch-related cue-locked and picture-locked ERP patterns across the language and task switching paradigms. These results support models of domain-general language control.


Sign in / Sign up

Export Citation Format

Share Document