scholarly journals Insight Gained from Genome-Wide Interaction and Enrichment Analysis on Weight Gain During Citalopram Treatment

2017 ◽  
Vol 39 (8) ◽  
pp. e13-e14
Author(s):  
H.T. Corfitsen ◽  
A. Drago
2017 ◽  
Vol 41 (S1) ◽  
pp. S163-S163
Author(s):  
H. Corfitsen ◽  
A. Drago

IntroductionWeight gain is a side effect of pharmacological antidepressant treatments, causing a poorer compliance, increasing the risk of metabolic syndrome and periods of untreated disease.ObjectivesThe ability to precisely prescribe pharmacological treatments based on personal genetic makeups would increase the quality of the current antidepressant treatments.AimsThe molecular pathways enriched during citalopram induced weight gain are identified.Methods643 depressed citalopram treated individuals with available clinical and genome-wide genetic information were investigated in the present contribution in order to identify the molecular pathways that holds the key to weight gain. Statistics were conducted in R environment (Bioconductor and Reactome packages), ANOVA and MANCOVA served when appropriate. Plink was used for genetic analysis in a linux environment.ResultsOne hundred and eleven individuals had their weight increased after treatment with citalopram. The axon guidance (P. adjust = 0.005) and the developmental biology pathway (P. adjust = 0.01) were found to be enriched in genetic variations associated with weight gain.ConclusionsThe development biology pathway includes molecular cascades involved in the regulation of beta-cell development, and the transcriptional regulation of white adipocyte differentiation. A number of variations were harboured by genes whose products are involved in the synthesis of collagen (COL4A3, COL5A1 and ITGA1), activity of the thyroid-hormones (NCOR1 and NCOR2), energy metabolism (ADIPOQ, PPARGC1A) and myogenic differentiation (CDON). A molecular pathway analysis conducted in a sample of depressed patients identifies new candidate genes whose future investigation may grant relevant insights in the molecular events that drive weight gain during antidepressant treatment.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jovana Maksimovic ◽  
Alicia Oshlack ◽  
Belinda Phipson

AbstractDNA methylation is one of the most commonly studied epigenetic marks, due to its role in disease and development. Illumina methylation arrays have been extensively used to measure methylation across the human genome. Methylation array analysis has primarily focused on preprocessing, normalization, and identification of differentially methylated CpGs and regions. GOmeth and GOregion are new methods for performing unbiased gene set testing following differential methylation analysis. Benchmarking analyses demonstrate GOmeth outperforms other approaches, and GOregion is the first method for gene set testing of differentially methylated regions. Both methods are publicly available in the missMethyl Bioconductor R package.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Clint L Miller ◽  
Milos Pjanic ◽  
Jonathan D Lee ◽  
Boxiang Liu ◽  
William J Greenleaf ◽  
...  

Genome-wide association studies have identified 46 replicated genetic loci for coronary heart disease (CHD), and 104 loci associated at a 5% false discovery rate. However, the regulatory mechanisms of these associations largely remain elusive. Given that the majority of these CHD-associated loci reside in non-coding regions, they are predicted to function via context-specific gene regulation. Recent high-throughput assays of regulatory function include the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq). ATAC-seq utilizes a Tn5 transposase to fragment and tag accessible DNA sequences, which are often coupled to transcription factor occupancy identified by ChIP-seq. Importantly, this assay may reveal the spatio-temporal regulatory profiles in limited numbers of primary cells. Using ATAC-seq in human coronary artery smooth muscle cells (HCASMC) we identified 147,173 accessible chromatin peaks in control versus 198,976 peaks in TGF-beta-stimulated cells (136,446 shared peaks). Using de novo motif enrichment analysis we identified significant enrichment of specific AP-1 family members (29.2% vs. 5.1% background), chromatin remodeling, and SMC differentiation transcription factors. Using functional enrichment analysis of ChIP-seq and CHD-overlapping regions we observed enrichment of the hypoxia inducible factor 1 (HIF-1) and TGF-beta signaling pathways (1.5x10 -22 and 5.6x10 -18 , respectively) and relevant phenotypes, including cell migration and blood vessel morphology. Finally, we utilized these regulatory maps to explore the causal mechanisms underlying CHD-associated variants at four loci using haplotype-specific chromatin immunoprecipitation (haploChIP) and luciferase reporter assays. Taken together, these results suggest that genome-wide approaches such as ATAC-seq can be leveraged to map context-specific regulatory mechanisms of non-coding variants associated with complex diseases such as CHD, and reveal new biological and molecular insights into targeting heritable disease risk.


2018 ◽  
Author(s):  
David M. Howard ◽  
Mark J. Adams ◽  
Toni-Kim Clarke ◽  
Jonathan D. Hafferty ◽  
Jude Gibson ◽  
...  

AbstractMajor depression is a debilitating psychiatric illness that is typically associated with low mood, anhedonia and a range of comorbidities. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant following multiple testing correction. Based on the putative genes associated with depression this work also highlights several potential drug repositioning opportunities. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding aetiology and developing new treatment approaches.


2017 ◽  
Author(s):  
Nicole M Warrington ◽  
Rebecca Richmond ◽  
Bjarke Fenstra ◽  
Ronny Myhre ◽  
Romy Gaillard ◽  
...  

AbstractBackgroundClinical recommendations to limit gestational weight gain (GWG) imply high GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of several inter-related complex phenotypes (maternal fat deposition and vascular expansion, placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG could help clarify the potential effect of its different components on maternal and offspring health. Here we explore the genetic contribution to total, early and late GWG.Participants and MethodsA genome-wide association study was used to identify maternal and fetal variants contributing to GWG in up to 10,543 mothers and up to 16,317 offspring of European origin, with replication in 10,660 mothers and 7,561 offspring. Additional analyses determined the proportion of variability in GWG from maternal and fetal common genetic variants and the overlap of established genome-wide significant variants for phenotypes relevant to GWG (e.g. maternal BMI and glucose, birthweight).ResultsWe found that approximately 20% of the variability in GWG was tagged by common maternal genetic variants, and that the fetal genome made a surprisingly minor contribution to explaining variation in GWG. We were unable to identify any genetic variants that reached genome-wide levels of significance (P<5×10−8) and replicated. Some established maternal variants associated with increased BMI, fasting glucose and type 2 diabetes were associated with lower early, and higher later GWG. Maternal variants related to higher systolic blood pressure were related to lower late GWG. Established maternal and fetal birthweight variants were largely unrelated to GWG.ConclusionWe found a modest contribution of maternal common variants to GWG and some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These findings suggest that associations between GWG and later offspring/maternal outcomes may be due to the relationship of maternal BMI and diabetes with GWG.


2015 ◽  
Vol 18 (6) ◽  
pp. 662-669 ◽  
Author(s):  
Chloe C. Y. Wong ◽  
Michael J. Parsons ◽  
Kathryn J. Lester ◽  
Joe Burrage ◽  
Thalia C. Eley ◽  
...  

Diurnal preference is an individual's preference for daily activities and sleep timing and is strongly correlated with the underlying circadian clock and the sleep-wake cycle validating its use as an indirect circadian measure in humans. Recent research has implicated DNA methylation as a mechanism involved in the regulation of the circadian clock system in humans and other mammals. In order to evaluate the extent of epigenetic differences associated with diurnal preference, we examined genome-wide patterns of DNA methylation in DNA from monozygotic (MZ) twin-pairs discordant for diurnal preference. MZ twins were selected from a longitudinal twin study designed to investigate the interplay of genetic and environmental factors in the development of emotional and behavioral difficulties. Fifteen pairs of MZ twins were identified in which one member scored considerably higher on the Horne–Ostberg Morningness–Eveningness Questionnaire (MEQ) than the other. Genome-wide DNA methylation patterns were assessed in twins’ buccal cell DNA using the Illumina Infinium HumanMethylation450 BeadChips. Quality control and data pre-processing was undertaken using the wateRmelon package. Differentially methylated probes (DMPs) were identified using an analysis strategy taking into account both the significance and the magnitude of DNA methylation differences. Our data indicate that DNA methylation differences are detectable in MZ twins discordant for diurnal preference. Moreover, downstream gene ontology (GO) enrichment analysis on the top-ranked diurnal preference associated DMPs revealed significant enrichment of pathways that have been previously associated with circadian rhythm regulation, including cell adhesion processes and calcium ion binding.


Sign in / Sign up

Export Citation Format

Share Document