scholarly journals A bi-potential contact formulation for recoverable adhesion between soft bodies based on the RCC interface model

2022 ◽  
Vol 390 ◽  
pp. 114478
Author(s):  
L.B. Hu ◽  
Y. Cong ◽  
P. Joli ◽  
Z.-Q. Feng
Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Konrad Dadej ◽  
Jarosław Bieniaś ◽  
Paolo Sebastiano Valvo

An experimental campaign on glass-fiber/aluminum laminated specimens was conducted to assess the interlaminar fracture toughness of the metal/composite interface. Asymmetric end-notched flexure tests were conducted on specimens with different fiber orientation angles. The tests were also modeled by using two different analytical solutions: a rigid interface model and an elastic interface model. Experimental results and theoretical predictions for the specimen compliance and energy release rate are compared and discussed.


The Auk ◽  
2021 ◽  
Author(s):  
Per Alström ◽  
Pamela C Rasmussen ◽  
Canwei Xia ◽  
Lijun Zhang ◽  
Chengyi Liu ◽  
...  

Abstract Prinias (Cisticolidae: Prinia) are resident warblers of open areas across Africa and Asia and include many polytypic species whose species limits have not been seriously reevaluated recently. Based on an integrative taxonomic analysis of morphology, song, and mitochondrial DNA (mtDNA), we suggest that 2 species should be recognized in the Graceful Prinia (Prinia gracilis) complex. In addition, our morphological analyses show the existence of a well-marked undescribed form in southeastern Somalia, which we name herein as a new subspecies. Prinia gracilis is a small, drab, long-tailed species with streaking above and plain pale underparts that has been suggested to fall into 2 groups: the southwestern nominate group (from Egypt to Oman) and the northeastern lepida group (from Turkey through India). However, the characters presented to justify this grouping are variable and show a mosaic pattern, and whether genetic and vocal differences exist is unknown. We found consistent between-group song differences, with the nominate group giving consistently longer inter-phrase intervals, whereas the members of the lepida group sing an essentially continuous reel. An mtDNA tree suggests a deep split between the nominate and lepida groups, with a coalescence time between these clades of ~ 2.2 million years ago. Vocal and mtDNA analyses provided evidence that the northeastern Arabian Peninsula taxon carpenteri belongs to the lepida group. We found that, of all the morphological characters proposed, only proportions and tail barring and spotting relatively consistently distinguish the 2 groups. However, these characters strongly suggest that the eastern Arabian Peninsula is populated by taxa of both the gracilis and lepida groups, in different areas, but we lack genetic and bioacoustic data to corroborate this. Although further study is needed in potential contact zones, we suggest that 2 species should be recognized in the P. gracilis complex, and we propose the retention of the English name Graceful Prinia for P. gracilis sensu stricto, while we suggest that P. lepida be known as Delicate Prinia.


2021 ◽  
Vol 13 (13) ◽  
pp. 2514
Author(s):  
Qianwei Dai ◽  
Hao Zhang ◽  
Bin Zhang

The chaos oscillation particle swarm optimization (COPSO) algorithm is prone to binge trapped in the local optima when dealing with certain complex models in ground-penetrating radar (GPR) data inversion, because it inherently suffers from premature convergence, high computational costs, and extremely slow convergence times, especially in the middle and later periods of iterative inversion. Considering that the bilateral connections between different particle positions can improve both the algorithmic searching efficiency and the convergence performance, we first develop a fast single-trace-based approach to construct an initial model for 2-D PSO inversion and then propose a TV-regularization-based improved PSO (TVIPSO) algorithm that employs total variation (TV) regularization as a constraint technique to adaptively update the positions of particles. B by adding the new velocity variations and optimal step size matrices, the search range of the random particles in the solution space can be significantly reduced, meaning blindness in the search process can be avoided. By introducing constraint-oriented regularization to allow the optimization search to move out of the inaccurate region, the premature convergence and blurring problems can be mitigated to further guarantee the inversion accuracy and efficiency. We report on three inversion experiments involving multilayered, fluctuated terrain models and a typical complicated inner-interface model to demonstrate the performance of the proposed algorithm. The results of the fluctuated terrain model show that compared with the COPSO algorithm, the fitness error (MAE) of the TVIPSO algorithm is reduced from 2.3715 to 1.0921, while for the complicated inner-interface model the fitness error (MARE) of the TVIPSO algorithm is reduced from 1.9539 to 1.5674.


2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Chris Groendyke ◽  
Adam Combs

Abstract Objectives: Diseases such as SARS-CoV-2 have novel features that require modifications to the standard network-based stochastic SEIR model. In particular, we introduce modifications to this model to account for the potential changes in behavior patterns of individuals upon becoming symptomatic, as well as the tendency of a substantial proportion of those infected to remain asymptomatic. Methods: Using a generic network model where every potential contact exists with the same common probability, we conduct a simulation study in which we vary four key model parameters (transmission rate, probability of remaining asymptomatic, and the mean lengths of time spent in the exposed and infectious disease states) and examine the resulting impacts on various metrics of epidemic severity, including the effective reproduction number. We then consider the effects of a more complex network model. Results: We find that the mean length of time spent in the infectious state and the transmission rate are the most important model parameters, while the mean length of time spent in the exposed state and the probability of remaining asymptomatic are less important. We also find that the network structure has a significant impact on the dynamics of the disease spread. Conclusions: In this article, we present a modification to the network-based stochastic SEIR epidemic model which allows for modifications to the underlying contact network to account for the effects of quarantine. We also discuss the changes needed to the model to incorporate situations where some proportion of the individuals who are infected remain asymptomatic throughout the course of the disease.


Sign in / Sign up

Export Citation Format

Share Document