scholarly journals The Transcriptional Corepressor RIP140 Regulates Oxidative Metabolism in Skeletal Muscle

2007 ◽  
Vol 6 (3) ◽  
pp. 236-245 ◽  
Author(s):  
Asha Seth ◽  
Jennifer H. Steel ◽  
Donna Nichol ◽  
Victoria Pocock ◽  
Mande K. Kumaran ◽  
...  
1974 ◽  
Vol 61 (2) ◽  
pp. 285-291 ◽  
Author(s):  
ASHA CHANDOLA ◽  
D. SURESH KUMAR ◽  
J. P. THAPLIYAL

SUMMARY Thyroidectomy and orchidectomy led to significant reduction in the oxidative metabolism of isolated liver and skeletal muscle tissue (at 30 °C) in Calotes versicolor. Thyroxine and male hormone were shown to increase this parameter in intact and orchidectomized lizards respectively. The effects of thyroidectomy and orchidectomy on tissue oxygen uptake were not additive. It is supposed that by its effect on oxidative metabolism male hormone may be of a greater physiological importance for reptiles than for other vertebrates. The present results show also that changes in environmental temperature can counteract the depressive effect of orchidectomy on the thyroid of this species of lizard.


2007 ◽  
Vol 293 (5) ◽  
pp. R2059-R2069 ◽  
Author(s):  
Steven D. Mason ◽  
Helene Rundqvist ◽  
Ioanna Papandreou ◽  
Roger Duh ◽  
Wayne J. McNulty ◽  
...  

During endurance training, exercising skeletal muscle experiences severe and repetitive oxygen stress. The primary transcriptional response factor for acclimation to hypoxic stress is hypoxia-inducible factor-1α (HIF-1α), which upregulates glycolysis and angiogenesis in response to low levels of tissue oxygenation. To examine the role of HIF-1α in endurance training, we have created mice specifically lacking skeletal muscle HIF-1α and subjected them to an endurance training protocol. We found that only wild-type mice improve their oxidative capacity, as measured by the respiratory exchange ratio; surprisingly, we found that HIF-1α null mice have already upregulated this parameter without training. Furthermore, untrained HIF-1α null mice have an increased capillary to fiber ratio and elevated oxidative enzyme activities. These changes correlate with constitutively activated AMP-activated protein kinase in the HIF-1α null muscles. Additionally, HIF-1α null muscles have decreased expression of pyruvate dehydrogenase kinase I, a HIF-1α target that inhibits oxidative metabolism. These data demonstrate that removal of HIF-1α causes an adaptive response in skeletal muscle akin to endurance training and provides evidence for the suppression of mitochondrial biogenesis by HIF-1α in normal tissue.


2016 ◽  
Vol 8 (334) ◽  
pp. 334ra54-334ra54 ◽  
Author(s):  
Vicent Ribas ◽  
Brian G. Drew ◽  
Zhenqi Zhou ◽  
Jennifer Phun ◽  
Nareg Y. Kalajian ◽  
...  

Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A–regulator of calcineurin 1–calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.


Diabetes ◽  
2012 ◽  
Vol 62 (3) ◽  
pp. 732-742 ◽  
Author(s):  
A. Galmozzi ◽  
N. Mitro ◽  
A. Ferrari ◽  
E. Gers ◽  
F. Gilardi ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Mariana Aguiar de Matos ◽  
Dênia Vargas Vieira ◽  
Kaio Cesar Pinhal ◽  
Jennifer Freitas Lopes ◽  
Marco Fabrício Dias-Peixoto ◽  
...  

1996 ◽  
Vol 81 (5) ◽  
pp. 2221-2228 ◽  
Author(s):  
Jean-François Toussaint ◽  
Kenneth K. Kwong ◽  
Fidelis M’Kparu ◽  
Robert M. Weisskoff ◽  
Paul J. Laraia ◽  
...  

Toussaint, Jean-François, Kenneth K. Kwong, Fidelis M’Kparu, Robert M. Weisskoff, Paul J. LaRaia, and Howard L. Kantor.Interrelationship of oxidative metabolism and local perfusion demonstrated by NMR in human skeletal muscle. J. Appl. Physiol. 81(5): 2221–2228, 1996.—Using nuclear magnetic resonance (NMR), we have examined the relationship of high-energy phosphate metabolism and perfusion in human soleus and gastrocnemius muscles. With31P-NMR spectroscopy, we monitored phosphocreatine (PCr) decay and recovery in eight normal volunteers and four heart failure patients performing ischemic plantar flexion. By using echo-planar imaging, perfusion was independently measured by a local [inversion-recovery (T1-flow)] and a regional technique (NMR-plethysmography). After correction for its pH dependence, PCr recovery time constant is 27.5 ± 8.0 s in normal volunteers, with mean flow 118 ± 75 (soleus and gastrocnemius T1-flow) and 30.2 ± 9.7 ml ⋅ 100 ml−1 ⋅ min−1(NMR-plethysmography-flow). We demonstrate a positive correlation between PCr time constant and local perfusion given by y = 50 − 0.15 x( r 2 = 0.68, P = 0.01) for the 8 normal subjects, and y = 64 − 0.24 x( r 2 = 0.83, P = 0.0001) for the 12 subjects recruited in the study. Regional perfusion techniques also show a significant but weaker correlation. Using this totally noninvasive method, we conclude that aerobic ATP resynthesis is related to the magnitude of perfusion, i.e., O2availability, and demonstrate that magnetic resonance imaging and magnetic resonance spectroscopy together can accurately assess muscle functional status.


2015 ◽  
Vol 3 (8) ◽  
pp. e12508 ◽  
Author(s):  
Michael Nyberg ◽  
Peter Piil ◽  
Jon Egelund ◽  
Randy S. Sprague ◽  
Stefan P. Mortensen ◽  
...  

2016 ◽  
Vol 121 (3) ◽  
pp. 699-708 ◽  
Author(s):  
Simone Porcelli ◽  
Mauro Marzorati ◽  
Lucia Morandi ◽  
Bruno Grassi

Aerobic training can be effective in patients with mitochondrial myopathies (MM) and McArdle's disease (McA). The aim of the study was to use noninvasive functional evaluation methods, specifically aimed at skeletal muscle oxidative metabolism, to evaluate the effects of an aerobic exercise training (cycle ergometer, 12 wk, 4 days/wk, ∼65-70% of maximal heart rate) in 6 MM and 7 McA. Oxygen uptake and skeletal muscle vastus lateralis fractional O2 extraction by near-infrared spectroscopy were assessed during incremental and low-intensity constant work rate (CWR) exercises before (BEFORE) and at the end (AFTER) of training. Peak O2 uptake increased significantly with training both in MM [14.7 ± 1.2 vs. 17.6 ± 1.4 ml·kg−1·min−1 (mean ± SD)] and in McA (18.5 ± 1.8 ml·kg−1·min−1 vs. 21.6 ± 1.9). Peak skeletal muscle fractional O2 extraction increased with training both in MM (22.0 ± 6.7 vs. 32.6 ± 5.9%) and in McA (18.5 ± 6.2 vs. 37.2 ± 7.2%). During low-intensity CWR in both MM and McA: V̇o2 kinetics became faster in AFTER, but only in the patients with slow V̇o2 kinetics in BEFORE; the transient overshoot in fractional O2 extraction kinetics disappeared. The level of habitual physical activity was not higher 3 mo after training (FOLLOW-UP vs. PRE). In MM and McA patients a home-based aerobic training program significantly attenuated the impairment of skeletal muscle oxidative metabolism and improved variables associated with exercise tolerance. Our findings indicate that in MM and McA patients near-infrared spectroscopy and V̇o2 kinetics can effectively detect the functional improvements obtained by training.


Sign in / Sign up

Export Citation Format

Share Document