High stretchable, pH-sensitive and self-adhesive rGO/CMCNa/PAA composite conductive hydrogel with good strain-sensing performance

2021 ◽  
Vol 24 ◽  
pp. 100669
Author(s):  
Lu Wu ◽  
Yunping Hu ◽  
Ping Tang ◽  
Hai Wang ◽  
Yuezhen Bin
2011 ◽  
Vol 22 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Huigang Xiao ◽  
Hui Li ◽  
Jinping Ou

Cement-based strain sensors (CBCC sensor) were fabricated by taking the advantage of piezoresistivity of CB-filled CBCC. CBCC sensors were centrally embedded into concrete columns (made with C40 and C80 concretes, respectively) to monitor the strain of the columns under cyclic load and monotonic load by measuring the resistance of CBCC sensors. The comparison between the monitored results of CBCC sensors and that of traditional displacement transducers indicates that CBCC sensors have good strain-sensing abilities. Meanwhile, CBCC sensors exhibit different failure modes that break later than C40 concrete columns, but a little earlier than C80 concrete columns. Therefore, the strength-matching principle between embedded CBCC sensors and concrete columns is proposed in this article to guarantee the sensing capacity of CBCC sensors in various concrete structures. The analytical results agree well with the experimental phenomena.


2020 ◽  
Vol 8 (18) ◽  
pp. 6185-6195 ◽  
Author(s):  
Mohammad Nankali ◽  
Norouz Mohammad Nouri ◽  
Mahdi Navidbakhsh ◽  
Nima Geran Malek ◽  
Mohammad Amin Amindehghan ◽  
...  

The impact of environmental parameters on the sensing behavior of carbon nanotube–elastomer nanocomposite strain sensors has been investigated, revealing significant effect of temperature and humidity variations on the sensing performance.


2020 ◽  
Vol 8 (6) ◽  
pp. 3109-3118 ◽  
Author(s):  
Peng He ◽  
Junying Wu ◽  
Xiaofeng Pan ◽  
Lihui Chen ◽  
Kai Liu ◽  
...  

An anti-freezing and moisturizing conductive hydrogel, capable of harvesting energy from moisture, was developed by incorporating tannic acid and carbon nanotubes into polyvinyl alcohol containing a water–glycerol dispersion.


Carbon ◽  
2019 ◽  
Vol 146 ◽  
pp. 701-708 ◽  
Author(s):  
Zuoli He ◽  
Joon-Hyung Byun ◽  
Gengheng Zhou ◽  
Byeong-Jin Park ◽  
Tae-Hoon Kim ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1586 ◽  
Author(s):  
Wu ◽  
Gu ◽  
Hou ◽  
Li ◽  
Ke ◽  
...  

In this work, a fast water-responsive shape memory hybrid polymer based on thermoplastic polyurethane (TPU) was prepared by crosslinking with hydroxyethyl cotton cellulose nanofibers (CNF-C) and multi-walled carbon nanotubes (CNTs). The effect of CNTs content on the electrical conductivity of TPU/CNF-C/CNTs nanocomposite was investigated for the feasibility of being a strain sensor. In order to know its durability, the mechanical and water-responsive shape memory effects were studied comprehensively. The results indicated good mechanical properties and sensing performance for the TPU matrix fully crosslinked with CNF-C and CNTs. The water-induced shape fixity ratio (Rf) and shape recovery ratio (Rr) were 49.65% and 76.64%, respectively, indicating that the deformed composite was able to recover its original shape under a stimulus. The TPU/CNF-C/CNTs samples under their fixed and recovered shapes were tested to investigate their sensing properties, such as periodicity, frequency, and repeatability of the sensor spline under different loadings. Results indicated that the hybrid composite can sense large strains accurately for more than 103 times and water-induced shape recovery can to some extent maintain the sensing accuracy after material fatigue. With such good properties, we envisage that this kind of composite may play a significant role in developing new generations of water-responsive sensors or actuators.


Nano Energy ◽  
2020 ◽  
Vol 78 ◽  
pp. 105389 ◽  
Author(s):  
Luyizheng Shuai ◽  
Zi Hao Guo ◽  
Panpan Zhang ◽  
Junmin Wan ◽  
Xiong Pu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document