scholarly journals A novel one-step synthesis of bright luminescent silicon nanocrystals capped with hydrophobic surface

2021 ◽  
Vol 45 ◽  
pp. 100547
Author(s):  
Yuping Xu ◽  
Yunzi Xin ◽  
Takashi Shirai
Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 677 ◽  
Author(s):  
Zhengyong Huang ◽  
Wenjie Xu ◽  
Yu Wang ◽  
Haohuan Wang ◽  
Ruiqi Zhang ◽  
...  

In this study, we develop a facial one-step approach to prepare durable super-hydrophobic coatings on glass surfaces. The hydrophobic characteristics, corrosive liquid resistance, and mechanical durability of the super-hydrophobic surface are presented. The as-prepared super-hydrophobic surface exhibits a water contact angle (WCA) of 157.2° and contact angle hysteresis of 2.3°. Mico/nano hierarchical structures and elements of silicon and fluorine is observed on super-hydrophobic surfaces. The adhesion strength and hardness of the surface are determined to be 1st level and 4H, respectively. The coating is, thus, capable of maintaining super-hydrophobic state after sand grinding with a load of 200 g and wear distances of 700 mm. The rough surface retained after severe mechanical abrasion observed by atomic force microscope (AFM) microscopically proves the durable origin of the super-hydrophobic coating. Results demonstrate the feasibility of production of the durable super-hydrophobic coating via enhancing its adhesion strength and surface hardness.


2018 ◽  
Vol 10 (42) ◽  
pp. 36523-36530 ◽  
Author(s):  
Seunghyun Back ◽  
Seongbeom Kim ◽  
Seung-Gab Kwon ◽  
Jong Eun Park ◽  
Song Yi Park ◽  
...  

2014 ◽  
Vol 789 ◽  
pp. 154-156
Author(s):  
Chun Mao Kang ◽  
Jin Yan Ji ◽  
Jun Li Zhao ◽  
Hong Peng Zhong ◽  
Jiao He ◽  
...  

Facile fabrication of bio-mimic super-hydrophobic surfaces has attracted attentions in both fundamental research and practical application. In this article, we developed a simple one step etching method to fabricate a super-hydrophobic surface on aluminum surface. The contact angel of water reaches 155.9° without coating any low energy materials. Surface morphology clearly demonstrates a combination of micro/nanohierarchical structures. Moreover, such surface remarkably shortens the bursting time of air bubbles under water. For a middle size bubble about 1mm, the bursting time at super-hydrophobic surface shortens to about 20%, comparing to freely bursting. This intriguing effect may contribute to future expand applications of super-hydrophobic surface in industrial field, such as fiber spinning.


Cellulose ◽  
2021 ◽  
Author(s):  
Tjaša Kolar ◽  
Branka Mušič ◽  
Romana Cerc Korošec ◽  
Vanja Kokol

AbstractDifferently structured aluminum (tri/mono) hydroxide (Al(OH)3 /AlO(OH)) nanoparticles were prepared and used as thermal-management additives to microfibrillated cellulose (MFC), cast-dried in thin-layer films. Both particles increased the thermal stability of the MFC film, yielding 20–23% residue at 600 °C, and up to 57% lowered enthalpy (to 5.5–7.5 kJ/g) at 0.15 wt% of loading, while transforming to alumina (Al2O3). However, the film containing 40 nm large Al(OH)3 particles decomposed in a one-step process, and released up to 20% more energy between 300 and 400 °C as compared to the films prepared from smaller (21 nm) and meta-stable AlO(OH), which decomposed gradually with an exothermic peak shifted to 480 °C. The latter resulted in a highly flexible, optically transparent (95%), and mechanically stronger (5.7 GPa) film with a much lower specific heat capacity (0.31–0.28 J/gK compared to 0.68–0.89 J/gK for MFC-Al(OH)3 and 0.87–1.26 for MFC films), which rendered it as an effective heat-dissipating material to be used in flexible opto-electronics. Low oxygen permeability (2192.8 cm3/m2day) and a hydrophobic surface (> 60°) also rendered such a film useful in ecologically-benign and thermosensitive packaging.


MRS Advances ◽  
2017 ◽  
Vol 2 (15) ◽  
pp. 847-856 ◽  
Author(s):  
Abdul Hai Alami ◽  
Kamilia Aokal ◽  
Mhd Adel Assad ◽  
Di Zhang ◽  
Hussain Alawadhi ◽  
...  

ABSTRACTGraphene is a 2-D carbon material showing considerable prominence in a wide range of optoelectronics, energy storage, thermal and mechanical applications. However, due to its unique features which are typically associated with difficulty in handling (ultra-thin thickness and hydrophobic surface, to name a few), synthesis and subsequent deposition processes are thus critical to the material properties of the prepared graphene films. While existing synthesis approaches such as chemical vapor deposition and epitaxial growth can grow graphene with high degree of order, the costly high temperature and/or high vacuum process prohibit the widespread usage, and the subsequent graphene transfer from the growth substrates for deposition proves to be challenging. Herein, a low-cost one-step synthesis and deposition approach for preparing few-layer graphene (FLG) on flexible copper substrates based on dry ball-free milling of graphite powder is proposed. Different from previous reports, copper substrates are inserted into the milling crucible, thus accomplishing simultaneous synthesis and deposition of FLG and eliminating further deposition step. Furthermore, while all previously reported high energy milling processes involve using balls of various sizes, we adopt a ball-free milling process relying only on centrifugal forces, which significantly reduces the surface damage of the deposition substrates. Sample characterization indicates that the process yields FLG deposited uniformly across all tested specimens. Consequently, this work takes graphene synthesis and deposition a step closer to full automation with simple and low-cost process.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 960 ◽  
Author(s):  
Xuewu Li ◽  
Tian Shi ◽  
Ben Li ◽  
Chuanwei Zhang ◽  
Bin Zhong ◽  
...  

Corrosion failure is a thorny issue that restricts the applications of Al alloys. As a research hotspot in functional realization, hydrophobic fabrication exactly offers an efficient method to settle metallic corrosions. This work has developed a facile and low-cost method to enhance corrosion resistance of Al alloys. The micro-nano dendrites have been firstly prepared on metallic substrate using one-step potentiostatic deposition. Then, wetting and electrochemical behaviors have been systematically investigated after stearic acid modification. Results show that the as-prepared surface possesses amplified and durable water repellence with an apparent contact angle (CA) of 154.2° and a sliding angle (SA) of 4.7°. Meanwhile, owing to the trapped air in dendrites, the newly-generated solid-air-liquid interfaces help to resist seawater penetration by reducing interfacial interactions on the super-hydrophobic surface as well as significantly enhance its corrosion resistance. This work sheds positive insights into extending the applications of Al alloys in many areas, especially for ocean engineering fields.


2020 ◽  
Vol 222 ◽  
pp. 135-148 ◽  
Author(s):  
Anna Fucikova ◽  
Ilya Sychugov ◽  
Jan Linnros

Here we present a one-step synthesis that provides silicon nanocrystals with a thin shell composed of a ceramic-like carbonyl based compound, embedded in a porous organosilicon film.


Sign in / Sign up

Export Citation Format

Share Document