One-step synthesis and deposition of few-layer graphene via facile, dry ball-free milling

MRS Advances ◽  
2017 ◽  
Vol 2 (15) ◽  
pp. 847-856 ◽  
Author(s):  
Abdul Hai Alami ◽  
Kamilia Aokal ◽  
Mhd Adel Assad ◽  
Di Zhang ◽  
Hussain Alawadhi ◽  
...  

ABSTRACTGraphene is a 2-D carbon material showing considerable prominence in a wide range of optoelectronics, energy storage, thermal and mechanical applications. However, due to its unique features which are typically associated with difficulty in handling (ultra-thin thickness and hydrophobic surface, to name a few), synthesis and subsequent deposition processes are thus critical to the material properties of the prepared graphene films. While existing synthesis approaches such as chemical vapor deposition and epitaxial growth can grow graphene with high degree of order, the costly high temperature and/or high vacuum process prohibit the widespread usage, and the subsequent graphene transfer from the growth substrates for deposition proves to be challenging. Herein, a low-cost one-step synthesis and deposition approach for preparing few-layer graphene (FLG) on flexible copper substrates based on dry ball-free milling of graphite powder is proposed. Different from previous reports, copper substrates are inserted into the milling crucible, thus accomplishing simultaneous synthesis and deposition of FLG and eliminating further deposition step. Furthermore, while all previously reported high energy milling processes involve using balls of various sizes, we adopt a ball-free milling process relying only on centrifugal forces, which significantly reduces the surface damage of the deposition substrates. Sample characterization indicates that the process yields FLG deposited uniformly across all tested specimens. Consequently, this work takes graphene synthesis and deposition a step closer to full automation with simple and low-cost process.

Author(s):  
Ibrahem Aziz Mohammed

Introduction: The graphene has received a great attention because of its extraordinary characteristics of high carrier mobility, excellent thermal conductivity, high optical transmittance, and superior mechanical strength. Developing a simple methods with the property of producing large quantities of high-quality graphene have become essential for electronics, optoelectronics, composite materials, and energy-storage applications. Materials and Methods: In this study, the simple one step and efficient method of grinding was used to produce few-layers graphene nanoflakes from graphite. Different microscopic (TEM, SEM, and AFM) and spectroscopics (XRD, XPS, and Raman) charactrization tools were used to test the quality of the resultant graphene nanoflakes. Results: The produced nanoflakes showed no traces of oxidation due to the grinding process. In addition, the applicability of the obtained nanoflakes as potential supercapacitor electrodes was investigated. For that purpose, thin films of the few-layer graphene nanoflakes were developed using spray coating technique. In terms of both transparency and conductivity, the prepared films showed equivalent properties compared to those prepared by more complex methods. The electrochemical properties of the prepared electrodes showed high specific capacitance of 86 F g_1 at 10 A g_1 with excellent stability. The electrodes sustained their original capacity for more than 7000 cycles and started reducing to 72 F g−1 after 10000 cycles. Conclussions: The method provides a simple, efficient, versatile, and eco-friendly approach to low-cost mass production of high-quality graphene few-layers. The electrochemical stability and flexibility of the developed thin films indicated that the films could be used as electrodes in a wide range of electronic applications.


2009 ◽  
Vol 1204 ◽  
Author(s):  
Enkeleda Dervishi ◽  
Zhongrui Li ◽  
Fumiya Watanabe ◽  
Jimmy Shyaka ◽  
Abhijit Biswas ◽  
...  

AbstractThis work reports a low-cost method for large scale production of high quality graphene via radio-frequency chemical vapor deposition. High quantities of graphene were successfully synthesized on the Fe-Co/MgO (2.5:2.5:95 wt.%) catalytic system utilizing acetylene as a hydrocarbon source at 1000 °C. The as-produced graphene sheets were purified in a single step by washing with a diluted hydrochloric acid solution under sonication. Next, they were thoroughly characterized by microscopy, spectroscopy, and X-Ray diffraction. Advanced transmission electron microscopy and atomic force microscopy analyses have indicated the formation of 3-5 layered graphene nanosheets. Thorough analyses by Raman spectroscopy were also performed demonstrating the presence of high quality and few-layer graphene samples. This low cost and highly reproducible method may be applied in a straightforward way to produce large quantities of graphene for various advanced applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44142-44148 ◽  
Author(s):  
Jun Pu ◽  
Lei Tang ◽  
Chaowei Li ◽  
Taotao Li ◽  
Lin Ling ◽  
...  

The facile and scalable technique is demonstrated, which grow graphene with controllable layers on copper foil substrates using the etching effect of H2 in atmospheric pressure chemical vapor deposition (APCVD).


2015 ◽  
Vol 274 ◽  
pp. 816-822 ◽  
Author(s):  
Junming Xu ◽  
Jinsong Wu ◽  
Langli Luo ◽  
Xinqi Chen ◽  
Huibin Qin ◽  
...  

2018 ◽  
Vol 18 (8) ◽  
pp. 898-904 ◽  
Author(s):  
Hongxia Wang ◽  
Leimei Sheng ◽  
Xinluo Zhao ◽  
Kang An ◽  
Zhongmin Ou ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4032
Author(s):  
Lianlian Liu ◽  
Niclas Solin ◽  
Olle Inganäs

Humic acid (HA) is a biopolymer formed from degraded plants, making it a ubiquitous, renewable, sustainable, and low cost source of biocarbon materials. HA contains abundant functional groups, such as carboxyl-, phenolic/alcoholic hydroxyl-, ketone-, and quinone/hydroquinone (Q/QH2)-groups. The presence of Q/QH2 groups makes HA redox active and, accordingly, HA is a candidate material for energy storage. However, as HA is an electronic insulator, it is essential to combine it with conductive materials in order to enable fabrication of HA electrodes. One of the lowest cost types of conductive materials that can be considered is carbon-based conductors such as graphite. Herein, we develop a facile method allowing the biocarbon to meet carbon; HA (in the form of a sodium salt) is mixed with graphite by a solvent-free mechanochemical method involving ball milling. Few-layer graphene sheets are formed and the HA/graphite mixtures can be used to fabricate HA/graphite hybrid material electrodes. These electrodes exhibit a conductivity of up to 160 S·m−1 and a discharge capacity as large as 20 mAhg−1. Our study demonstrates a novel methodology enabling scalable fabrication of low cost and sustainable organic electrodes for application as supercapacitors.


Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 163 ◽  
Author(s):  
Casimiro ◽  
Ferreira ◽  
Leal ◽  
Pereira ◽  
Monteiro

The use of ionizing radiation processing technologies has proven to be one of the most versatile ways to prepare a wide range of membranes with specific tailored functionalities, thus enabling them to be used in a variety of industrial, environmental, and biological applications. The general principle of this clean and environmental friendly technique is the use of various types of commercially available high-energy radiation sources, like 60Co, X-ray, and electron beam to initiate energy-controlled processes of free-radical polymerization or copolymerization, leading to the production of functionalized, flexible, structured membranes or to the incorporation of functional groups within a matrix composed by a low-cost polymer film. The present manuscript describes the state of the art of using ionizing radiation for the preparation and functionalization of polymer-based membranes for biomedical and environmental applications.


2019 ◽  
Vol 6 (10) ◽  
pp. 105604
Author(s):  
Lirong Zhao ◽  
Yanyan Wang ◽  
Xiaodong Zhu ◽  
Peixuan Ji ◽  
Kaimin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document