Graphene Supported Poly(3-aminophenylboronic acid) Surface via Constant Potential Electrolysis for Facile and Sensitive Paracetamol Determination

Author(s):  
Sultan Gürsoy ◽  
Filiz Kuralay
2018 ◽  
Vol 68 (12) ◽  
pp. 2799-2803
Author(s):  
Maria Daniela Pop ◽  
Oana Brincoveanu ◽  
Mihaela Cristea ◽  
George Octavian Buica ◽  
Marius Enachescu ◽  
...  

Preparation and microscopy characterization of polymer modified glassy carbon electrodes based on (5-[(azulen-1-yl) methylene]-2-thioxothiazolidin-4-one (L) were reported. Atomic Force Microscopy was used to investigate the morphological and mechanical properties of the deposited polyL films onto glassy carbon. The topography images of the analyzed samples exhibited the presence of some columnar shape features onto the layer surfaces. The surface roughness of the layers deposited at constant charge calculated from topography images, increased with the more positive applied potential for controlled potential electrolysis. At different charges, the roughness parameter showed the same behavior for the layers obtained applying a constant potential without having a noticeable influence on the adhesion properties on the substrate. Analysis using scanning electron microscopy shows a relatively uniform surface arrangement of the polymer and the presence of some clusters which are disturbing the planarity. PolyL chemically modified electrodes have been used for heavy metal ions detection with best results for lead.


1986 ◽  
Vol 51 (3) ◽  
pp. 636-642
Author(s):  
Michal Németh ◽  
Ján Mocák

A highly efficient coulometric cell was designed and constructed, ensuring a constant potential over the whole surface of the working electrode and suitable for very rapid electrolysis. It consists of concentric cylindrical Teflon parts; also the working and auxiliary electrodes are cylindrical and concentric. Electrolysis can be carried out under anaerobic conditions. Functioning of the cell was tested on the oxidation of hexacyanoferrate(II) and chlorpromazine and reduction of hexacyanoferrate(III). The new cell is suitable for routine quantitative analyses and in studying the mechanism and kinetics of moderately rapid chemical reactions.


1993 ◽  
Vol 58 (3) ◽  
pp. 496-505
Author(s):  
Ondřej Wein

Partial blocking of the transport surface under the stagnant (nerst) layer is simulated by periodically alternating bands of perfectly insulating zones and active zones with a constant potential of driving force. The numeric solution of the corresponding two-dimensional elliptic problem is represented by a simple empirical correlation for the transfer coefficients. The result is interpreted in terms of a simple electrochemical problem about limiting diffusion currents at electrodes with non-uniform surface activity.


Synlett ◽  
2021 ◽  
Author(s):  
Kripa Subramanian ◽  
Subhash L. Yedage ◽  
Kashish Sethi ◽  
Bhalchandra M. Bhanage

An electrochemical method for the synthesis of phenanthridinones via constant potential electrolysis (CPE) mediated by <i>n</i>-Bu<sub>4</sub>NI (TBAI) has been reported. The protocol is metal and oxidant free and proceeds with 100% current efficiency. Here TBAI plays the dual role of the redox catalyst as well as supporting electrolyte. The intramolecular C-H activation proceeds under mild reaction conditions and short reaction time via electrochemically generated amidyl radicals. The reaction has been scaled up to gram level showing its practicability and the synthetic utility and applicability of the protocol has been demonstrated by the direct one-step synthesis of the bioactive compound Phenaglaydon.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 169
Author(s):  
Francesca Mazzara ◽  
Bernardo Patella ◽  
Chiara D’Agostino ◽  
Maria Giuseppina Bruno ◽  
Sonia Carbone ◽  
...  

Nowadays, we are assisting in the exceptional growth in research relating to the development of wearable devices for sweat analysis. Sweat is a biofluid that contains useful health information and allows a non-invasive, continuous and comfortable collection. For this reason, it is an excellent biofluid for the detection of different analytes. In this work, electrochemical sensors based on polyaniline thin films deposited on the flexible substrate polyethylene terephthalate coated with indium tin oxide were studied. Polyaniline thin films were abstained by the potentiostatic deposition technique, applying a potential of +2 V vs. SCE for 90 s. To improve the sensor performance, the electronic substrate was modified with reduced graphene oxide, obtained at a constant potential of −0.8 V vs. SCE for 200 s, and then polyaniline thin films were electrodeposited on top of the as-deposited substrate. All samples were characterized by XRD, SEM, EDS, static contact angle and FT-IR/ATR analysis to correlate the physical-chemical features with the performance of the sensors. The obtained electrodes were tested as pH sensors in the range from 2 to 8, showing good behavior, with a sensitivity of 62.3 mV/pH, very close to a Nernstian response, and a reproducibility of 3.8%. Interference tests, in the presence of competing ions, aimed to verify the selectivity, were also performed. Finally, a real sweat sample was collected, and the sweat pH was quantified with both the proposed sensor and a commercial pH meter, showing an excellent concordance.


2020 ◽  
Author(s):  
Anna N. Berlina ◽  
Nadezhda S. Komova ◽  
Anatoly V. Zherdev ◽  
Boris B. Dzantiev

2017 ◽  
Vol 30 (4) ◽  
pp. 602-606 ◽  
Author(s):  
Egor A. Andreev ◽  
Maria A. Komkova ◽  
Vera A. Shavokshina ◽  
Denis E. Presnov ◽  
Vladimir A. Krupenin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document