Combustion characteristics of high energy Ti–Al–B nanopowders in a decane spray flame

2017 ◽  
Vol 176 ◽  
pp. 361-369 ◽  
Author(s):  
Michael R. Weismiller ◽  
Zachary J. Huba ◽  
Steven G. Tuttle ◽  
Albert Epshteyn ◽  
Brian T. Fisher
Author(s):  
A. Korotkikh ◽  
◽  
I. Sorokin ◽  
◽  

The paper presents the results of thermodynamic calculations of the effect of pure boron additives on combustion characteristics of high-energy materials (HEM) based on ammonium perchlorate, ammonium nitrate, active fuel-binder, and powders of aluminum Al, titanium Ti, magnesium Mg, and boron B. The combustion parameters and the equilibrium composition of condensed combustion products (CCPs) of HEM model compositions were obtained with thermodynamic calculation program “Terra.” The compositions of solid propellants with different ratios of metals (Al/B, Ti/B, Mg/B, and Al/Mg/B) were considered. The combustion temperature Tad in a combustion chamber, the vacuum specific impulse J at the nozzle exit, and the mass fraction ma of the CCPs for HEMs were determined.


2013 ◽  
Vol 832 ◽  
pp. 248-253
Author(s):  
B.S. Bidita ◽  
Suraya Abdul Rashid ◽  
Azni B. Idris ◽  
Mohamad Amran Mohd Salleh

Nanoemulsions are a class of nanomaterials which play an increasingly important role in commercial and environmental aspects. Water-in-diesel (W/D) nanoemulsion is considered one of the environmental friendly alternative fuels for reducing the emission pollution of internal combustion engine such as diesel engines. In this context, a study has been made to evaluate the combustion characteristics of W/D nanoemulsion fuel. A wide range of surfactant concentration (0.25% to 0.40% v/v) with varying amount of water percentage (0.5% to 0.8% v/v) was used in the preparation of W/D nanoemulsion fuel. The high energy emulsification method was applied to prepare W/D nanoemulsions. The combustion characteristics of W/D nanoemulsions are presented in terms of different formulating compositions. An engine test bed was used to combust the W/D nanoemulsions for measuring the exhaust emission concentrations such as CO, CO2 and NH3. A reduction in the concentrations of exhaust gas emissions was notified.


2014 ◽  
Vol 18 (4) ◽  
pp. 26-32
Author(s):  
Doo-Hee Han ◽  
Jeong-Seok Kang ◽  
Jun-Su Shin ◽  
Hong-Gye Sung ◽  
Kyung-Hoon Shin ◽  
...  

2003 ◽  
Vol 2003 (0) ◽  
pp. 497-498
Author(s):  
Rei ISHIDA ◽  
Susumu SHIMURA ◽  
Hiroyasu SAITOH ◽  
Fumiteru AKAMATSU ◽  
Masashi KATSUKI

Author(s):  
Srinibas Karmakar ◽  
Sumanta Acharya ◽  
Kerry M. Dooley

Biofuels such as ethanol have lower energy density than conventional petroleum-based fuels, and therefore enhancing its energy density via addition of high-energy density components is an attractive option. Boron is an attractive fuel additive because it has among the highest volumetric heating value among potentially suitable additives. The present study deals with an experimental investigation of boron combustion in an ethanol spray flame. A constant low particle loading density of boron nanoparticles (60nm SMD), around 1% (by weight) of the liquid fuel flow rate, has been used. Though it has high energetic potential, the combustion process of boron is retarded by the initial presence of the oxide coating the particle surface. In the present study, measurements have been made of the emission of intermediate sub-oxide like BO2 using spectroscopy and imaging with interference filters. The effect of boron on the hydrocarbon combustion has also been studied by examining the heat release and product mole fractions. In addition, particle characterization has been carried out to know the size, surface structure/composition of the injected boron nano powders using XRD, XPS and TEM. A preliminary investigation has also been performed on the burnt particle collected from the exhaust structure using XRD. The chemiluminescence and spectroscopic signatures indicate that boron combustion is facilitated and that hydrocarbon combustion is enhanced. The particle analysis shows differences in the imaged and spectroscopic characteristics of the unburnt and burnt nano-particles reflecting the particle-combustion processes.


1974 ◽  
Author(s):  
R. B. Schiefer ◽  
D. A. Sullivan

The current shortage of conventional gas turbine fuels has created the need for new sources of “clean” fuel. One of the most promising new fuels is low Btu gaseous fuel, such as produced by air injected coal or oil gasifiers or other chemical processes. The various sources of low Btu fuels and their combustion characteristics are discussed. To burn many of the low Btu fuels in the 100–300 Btu/scf range necessitates certain design modifications to the gas turbine originally optimized for high energy fuels. The extent of the modification depends greatly on the low Btu fuel. The impact of low Btu fuels on the gas turbine thermodynamic cycle performance and environmental performance is very encouraging. From the environmental viewpoint, low Btu fuels promise to be “clean” fuels while providing increased output at higher thermal cycle efficiencies than achieved with conventional fuels.


Sign in / Sign up

Export Citation Format

Share Document