Effect of interatomic potentials on modeling the nanostructure of amorphous carbon by liquid quenching method

2020 ◽  
Vol 184 ◽  
pp. 109939
Author(s):  
Qingkang Liu ◽  
Longqiu Li ◽  
Yeau-Ren Jeng ◽  
Guangyu Zhang ◽  
Cijun Shuai ◽  
...  
Materia Japan ◽  
1996 ◽  
Vol 35 (4) ◽  
pp. 415-417 ◽  
Author(s):  
Masahiro Oguchi ◽  
Yoshio Harakawa ◽  
Takayuki Matsuda ◽  
Akihisa Inoue ◽  
Tsuyoshi Masumoto

2019 ◽  
Vol 956 ◽  
pp. 78-86
Author(s):  
Jia Wang ◽  
Cheng Lin Liu

The effects of temperature and graphite-like structure additive on the graphitization process of amorphous carbon were investigated through molecular dynamics simulation. The molecular models of amorphous carbon and graphite-like structure-amorphous carbon were constructed with the initial density of 1.62 g/cm3 and carbon atoms number of 4096 by rapid quenching method. After annealing treatment at 3200 K, 3600 K and 4000 K respectively, the evolution rules of sp2 C atoms and the instantaneous conformations of the graphite-like structure-amorphous carbon system were analyzed to investigate the effects of temperature and graphite-like structure on the graphitization process. It could be found that increasing graphitization temperature properly could improve graphitization degree of amorphous carbon. Addition of graphite-like structure could promote recrystallization of the irregular carbon atoms in amorphous carbon materials, thus accelerating graphitization process and promoting graphitization of the system.


Author(s):  
Longqiu Li ◽  
Ming Xu ◽  
Wenping Song ◽  
Guangyu Zhang ◽  
Andrey Ovcharenko

Molecular dynamics (MD) simulations is an effective method to investigate the mechanical and tribological properties of amorphous carbon since the coordinates of all atoms can be calculated as a function of time. Several empirical potentials can be used to model the interatomic interactions of carbon atoms, including the Tersoff potential, the Reactive Bond Order (REBO) potential and its revised versions, and the Reactive Force Field (ReaxFF) potential. The choice of empirical potential is one of the fundamental and important assumptions in the MD approach since it can affect the properties of amorphous carbon during the MD simulations. In this study, liquid quenching method is used to model amorphous carbon for computational efficiency. We will study the influence of the three types of potentials, specifically the Tersoff potential, the 2nd REBO potential and the ReaxFF potential on DLC parameters. These parameters include the sp3 content as a function of density, the arrangement of the amorphous carbon atoms, hybridization and the radial distribution functions G(r).


Author(s):  
D. L. Misell

In the electron microscopy of biological sections the adverse effect of chromatic aberration on image resolution is well known. In this paper calculations are presented for the inelastic and elastic image intensities using a wave-optical formulation. Quantitative estimates of the deterioration in image resolution as a result of chromatic aberration are presented as an alternative to geometric calculations. The predominance of inelastic scattering in the unstained biological and polymeric materials is shown by the inelastic to elastic ratio, I/E, within an objective aperture of 0.005 rad for amorphous carbon of a thickness, t=50nm, typical of biological sections; E=200keV, I/E=16.


Author(s):  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

It is interesting to observe polymers at atomic size resolution. Some works have been reported for thorium pyromellitate by using a STEM (1), or a CTEM (2,3). The results showed that this polymer forms a chain in which thorium atoms are arranged. However, the distance between adjacent thorium atoms varies over a wide range (0.4-1.3nm) according to the different authors.The present authors have also observed thorium pyromellitate specimens by means of a field emission STEM, described in reference 4. The specimen was prepared by placing a drop of thorium pyromellitate in 10-3 CH3OH solution onto an amorphous carbon film about 2nm thick. The dark field image is shown in Fig. 1A. Thorium atoms are clearly observed as regular atom rows having a spacing of 0.85nm. This lattice gradually deteriorated by successive observations. The image changed to granular structures, as shown in Fig. 1B, which was taken after four scanning frames.


Author(s):  
David A. Muller

The sp2 rich amorphous carbons have a wide variety of microstructures ranging from flat sheetlike structures such as glassy carbon to highly curved materials having similar local ordering to the fullerenes. These differences are most apparent in the region of the graphite (0002) reflection of the energy filtered diffracted intensity obtained from these materials (Fig. 1). All these materials consist mainly of threefold coordinated atoms. This accounts for their similar appearance above 0.8 Å-1. The fullerene curves (b,c) show a string of peaks at distance scales corresponding to the packing of the large spherical and oblate molecules. The beam damaged C60 (c) shows an evolution to the sp2 amorphous carbons as the spherical structure is destroyed although the (220) reflection in fee fcc at 0.2 Å-1 does not disappear completely. This 0.2 Å-1 peak is present in the 1960 data of Kakinoki et. al. who grew films in a carbon arc under conditions similar to those needed to form fullerene rich soots.


Author(s):  
Mircea Fotino ◽  
D.C. Parks

In the last few years scanning tunneling microscopy (STM) has made it possible and easily accessible to visualize surfaces of conducting specimens at the atomic scale. Such performance allows the detailed characterization of surface morphology in an increasing spectrum of applications in a wide variety of fields. Because the basic imaging process in STM differs fundamentally from its equivalent in other well-established microscopies, good understanding of the imaging mechanism in STM enables one to grasp the correct information content in STM images. It thus appears appropriate to explore by STM the structure of amorphous carbon films because they are used in many applications, in particular in the investigation of delicate biological specimens that may be altered through the preparation procedures.All STM images in the present study were obtained with the commercial instrument Nanoscope II (Digital Instruments, Inc., Santa Barbara, California). Since the importance of the scanning tip for image optimization and artifact reduction cannot be sufficiently emphasized, as stressed by early analyses of STM image formation, great attention has been directed toward adopting the most satisfactory tip geometry. The tips used here consisted either of mechanically sheared Pt/Ir wire (90:10, 0.010" diameter) or of etched W wire (0.030" diameter). The latter were eventually preferred after a two-step procedure for etching in NaOH was found to produce routinely tips with one or more short whiskers that are essentially rigid, uniform and sharp (Fig. 1) . Under these circumstances, atomic-resolution images of cleaved highly-ordered pyro-lytic graphite (HOPG) were reproducibly and readily attained as a standard criterion for easily recognizable and satisfactory performance (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document