Analysis of the impact of PCI planning on downlink throughput performance in LTE

2015 ◽  
Vol 76 ◽  
pp. 42-54 ◽  
Author(s):  
R. Acedo-Hernández ◽  
M. Toril ◽  
S. Luna-Ramírez ◽  
I. de la Bandera ◽  
N. Faour
2013 ◽  
Vol E96.B (1) ◽  
pp. 329-334 ◽  
Author(s):  
Suguru KAMEDA ◽  
Hiroshi OGUMA ◽  
Noboru IZUKA ◽  
Yasuyoshi ASANO ◽  
Yoshiharu YAMAZAKI ◽  
...  

2018 ◽  
Vol 7 (2.5) ◽  
pp. 15
Author(s):  
Zuhanis Mansor ◽  
Muhammad Khairulanwar bin Zulkafli

The initial deployments of antenna in the handset consist of fixed non-rotated antenna for transmitting and receiving the signal in the wireless communication scenario. However, link correlation at the UE shows very bad performance when the handset rotates in landscape position. This paper evaluates the impact of accelerometer on the downlink propagation channel of 3G smartphone for non-line-of-sight links. The performance average received signal power is studied for user equipment. Results show that the exploitation of an accelerometer provide better performance in terms of received signal power when the handset rotated from portrait to landscape position. It can be concluded that the deployment of accelerometer can be used to improve existing 3G smartphone received signal. Results also indicate that accelerometer can be used to improve downlink throughput since the signal-to-noise-power is increased by approximately 16%.


2018 ◽  
Author(s):  
P Rajesh ◽  
C K Madhusudana ◽  
Prakash Nagarajan ◽  
Rakesh Hanumantha

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqi Lei ◽  
Hongbin Chen ◽  
Feng Zhao

The energy efficiency (EE) is a key metric of ultradense heterogeneous cellular networks (HCNs). Earlier works on the EE analysis of ultradense HCNs by using the stochastic geometry tool only focused on the impact of the base station density ratio and ignored the function of different tiers. In this paper, a two-tier ultradense HCN with small-cell base stations (SBSs) and user equipments (UEs) densely deployed in a traditional macrocell network is considered. Firstly, the performance of the ultradense HCN in terms of the association probability, average link spectral efficiency (SE), average downlink throughput, and average EE is theoretically analyzed by using the stochastic geometry tool. Then, the problem of maximizing the average EE while meeting minimum requirements of the average link SE and average downlink throughput experienced by UEs in macrocell and small-cell tiers is formulated. As it is difficult to obtain the explicit expression of average EE, impacts of the SBS density ratio and signal-to-interference-plus-noise ratio (SINR) threshold on the network performance are investigated through numerical simulations. Simulation results validate the accuracy of theoretical results and demonstrate that the maximum value of average EE can be achieved by optimizing the SBS density ratio and the SINR threshold.


2013 ◽  
Vol 712-715 ◽  
pp. 1816-1819
Author(s):  
Li Ying Xie ◽  
Jin Xin Ruan

With the previous proposed G/G/1 model, this paper analyzed the throughput expression in an unsaturated 802.11e one-hop ad hoc network. The expression is validated and the throughput performance is discussed by the simulations. The throughput expression derived in this paper will provide a way to analyze the impact of major QoS specific features on the throughput and hence can improve the performance of the network.


2020 ◽  
Vol 17 (2) ◽  
pp. 145
Author(s):  
Muhammad Yaser

<p><em>Coexistence GSM network and LTE femto relies on the number of femtocell deployment position. In the earlier study, the impact of macrocell size, femtocell deployment position, and coexistence LTE femtocell network integrated with GSM macrocell had been discussed. LTE femtocell used Orthogonal Frequency Division Multiplexing (OFDM) technology for its operation. In coexistence networks, LTE femtocells operate with OFDM technology so that they can utilize several radio frequency fractions without disturbing other parts of the frequency located between them. Unfortunately, the impact of femtocell number on the coexistence network had not been discussed. SINR and femtocell throughput performance are mathematically analyzed. The result showed that femtocell number had an effect on the coexistence network performance. SINR GSM, SINR femtocell and femtocell throughput significantly degraded as the femtocell number increased. The increasing femtocell number from M =0 to M =20 on each GSM cell cause around 14 dB degradation in SINR GSM, 3 dB decline in SINR Femto, approximately 1.7% decline in throughput for K = 4. Meanwhile for K = 7, the increasing femtocell number cause 17 dB decline in SINR GSM 6,5 dB decline in SINR Femto and 3.2 % decline in throughput. Those happened since the LTE femtocell interference went up. So femtocell number greatly influences the Coexistence GSM Network and LTE femtocell.</em></p><p><em><br /></em></p><p><em>Jaringan koeksistensi GSM dan LTE Femto sangat tergantung pada kondisi sebaran femtocell, di</em><em> </em><em>antaranya jumlah femtocell. Pada studi sebelumnya telah dibahas mengenai pengaruh ukuran macrocell dan posisi penyebaran femtocell dan jaringan koeksistensi LTE femtocell yang diintegrasikan dengan GSM macrocell. Dalam jaringan koeksistensi, LTE femtocell beroperasi dengan teknologi Orthogonal Frequency Division Multiplexing (OFDM) sehingga dapat memanfaatkan beberapa fraksi frekuensi radio tanpa mengganggu bagian lain dari frekuensi yang terletak di antaranya Namun studi sebelumnya belum membahas pengaruh jumlah femtocell pada jaringan koeksistensi ini. Kinerja kedua sistem yang dalam hal ini SINR dan femtocell throughput dianalisis secara matematis. Hasil simulasi menunjukan bahwa jumlah femtocell memiliki efek pada kinerja jaringan koeksistensi. SINR GSM, SINR femtocell dan femtocell throughput semakin menurun seiring dengan peningkatan jumlah femtocell</em><em>.</em><em> Peningkatan jumlah femtocell dari M = 0 ke M = 20 pada setiap sel GSM menyebabkan penurunan sekitar 14</em><em> </em><em>dB SINR GSM, penurunan 3</em><em> </em><em>dB SINR Femto, sekitar1, 7% penurunan throughput untuk K = 4. Sementara itu untuk K = 7, peningkatan junlah femtocell menyebabkan penurunan 17</em><em> </em><em>dB SINR GSM, penurunan 6.5</em><em> </em><em>dB SINR Femtocell dan penurunan 3, 2% dalam throughput. Hal ini disebabkan oleh peningkatan interferensi dari LTE femtocell. Maka jumlah LTE femtocell sangat mempengaruhi sistem koeksistensi LTE femtocell dengan jaringan GSM</em><em>.</em><em></em></p><p><em><br /></em></p>


Sign in / Sign up

Export Citation Format

Share Document