scholarly journals A Spatiotemporal exploration and 3D modeling of blood flow in healthy carotid artery bifurcation from two modalities: Ultrasound-Doppler and phase contrast MRI

2020 ◽  
Vol 118 ◽  
pp. 103644
Author(s):  
Arij Debbich ◽  
Asma Ben Abdallah ◽  
Mezri Maatouk ◽  
Badii Hmida ◽  
Monica Sigovan ◽  
...  
2015 ◽  
Vol 204 (3) ◽  
pp. 510-518 ◽  
Author(s):  
Hadrien A. Dyvorne ◽  
Ashley Knight-Greenfield ◽  
Cecilia Besa ◽  
Nancy Cooper ◽  
Julio Garcia-Flores ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 111-127 ◽  
Author(s):  
A. M. Hoving ◽  
E. E. de Vries ◽  
J. Mikhal ◽  
G. J. de Borst ◽  
C. H. Slump

Abstract Purpose In vitro blood flow studies in carotid artery bifurcation models may contribute to understanding the influence of hemodynamics on carotid artery disease. However, the design of in vitro blood flow studies involves many steps and selection of imaging techniques, model materials, model design, and flow visualization parameters. Therefore, an overview of the possibilities and guidance for the design process is beneficial for researchers with less experience in flow studies. Methods A systematic search to in vitro flow studies in carotid artery bifurcation models aiming at quantification and detailed flow visualization of blood flow dynamics results in inclusion of 42 articles. Results Four categories of imaging techniques are distinguished: MRI, optical particle image velocimetry (PIV), ultrasound and miscellaneous techniques. Parameters for flow visualization are categorized into velocity, flow, shear-related, turbulent/disordered flow and other parameters. Model materials and design characteristics vary between study type. Conclusions A simplified three-step design process is proposed for better fitting and adequate match with the pertinent research question at hand and as guidance for less experienced flow study researchers. The three consecutive selection steps are: flow parameters, image modality, and model materials and designs. Model materials depend on the chosen imaging technique, whereas choice of flow parameters is independent from imaging technique and is therefore only determined by the goal of the study.


2008 ◽  
Vol 28 (3) ◽  
pp. 655-663 ◽  
Author(s):  
Petter Dyverfeldt ◽  
John-Peder Escobar Kvitting ◽  
Andreas Sigfridsson ◽  
Jan Engvall ◽  
Ann F. Bolger ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e95721 ◽  
Author(s):  
Peiying Liu ◽  
Hanzhang Lu ◽  
Francesca M. Filbey ◽  
Amy E. Pinkham ◽  
Carrie J. McAdams ◽  
...  

2016 ◽  
Vol 120 (12) ◽  
pp. 1466-1473 ◽  
Author(s):  
Karina Marshall-Goebel ◽  
Khalid Ambarki ◽  
Anders Eklund ◽  
Jan Malm ◽  
Edwin Mulder ◽  
...  

Alterations in cerebral hemodynamics in microgravity are hypothesized to occur during spaceflight and could be linked to the Visual Impairment and Intracranial Pressure syndrome. Head-down tilt (HDT) is frequently used as a ground-based analog to simulate cephalad fluid shifts in microgravity; however, its effects on cerebral hemodynamics have not been well studied with MRI techniques. Here, we evaluate the effects of 1) various HDT angles on cerebral arterial and venous hemodynamics; and 2) exposure to 1% CO2 during an intermediate HDT angle (−12°) as an additional space-related environmental factor. Blood flow, cross-sectional area (CSA), and blood flow velocity were measured with phase-contrast MRI in the internal jugular veins, as well as the vertebral and internal carotid arteries. Nine healthy male subjects were measured at baseline (supine, 0°) and after 4.5 h of HDT at −6°, −12° (with and without 1% CO2), and −18°. We found a decrease in total arterial blood flow from baseline during all angles of HDT. On the venous side, CSA increased with HDT, and outflow decreased during −12° HDT ( P = 0.039). Moreover, the addition of 1% CO2 to −12° HDT caused an increase in total arterial blood flow ( P = 0.016) and jugular venous outflow ( P < 0.001) compared with −12° HDT with ambient atmosphere. Overall, the results indicate decreased cerebral blood flow during HDT, which may have implications for microgravity-induced cerebral hemodynamic changes.


Sign in / Sign up

Export Citation Format

Share Document