Potential colchicine binding site inhibitors unraveled by virtual screening, molecular dynamics and MM/PBSA

2021 ◽  
Vol 137 ◽  
pp. 104817
Author(s):  
Leonardo Bruno Federico ◽  
Guilherme Martins Silva ◽  
Suzane Quintana Gomes ◽  
Isaque Antonio Galindo Francischini ◽  
Mariana Pegrucci Barcelos ◽  
...  
2019 ◽  
Vol 25 (10) ◽  
pp. 1059-1074 ◽  
Author(s):  
Raju Dash ◽  
Md. Arifuzzaman ◽  
Sarmistha Mitra ◽  
Md. Abdul Hannan ◽  
Nurul Absar ◽  
...  

Background: Although protein kinase D1 (PKD1) has been proved to be an efficient target for anticancer drug development, lack of structural details and substrate binding mechanisms are the main obstacles for the development of selective inhibitors with therapeutic benefits. Objective: The present study described the in silico dynamics behaviors of PKD1 in binding with selective and non-selective inhibitors and revealed the critical binding site residues for the selective kinase inhibition. Methods: Here, the three dimensional model of PKD1 was initially constructed by homology modeling along with binding site characterization to explore the non-conserved residues. Subsequently, two known inhibitors were docked to the catalytic site and the detailed ligand binding mechanisms and post binding dyanmics were investigated by molecular dynamics simulation and binding free energy calculations. Results: According to the binding site analysis, PKD1 serves several non-conserved residues in the G-loop, hinge and catalytic subunits. Among them, the residues including Leu662, His663, and Asp665 from hinge region made polar interactions with selective PKD1 inhibitor in docking simulation, which were further validated by the molecular dynamics simulation. Both inhibitors strongly influenced the structural dynamics of PKD1 and their computed binding free energies were in accordance with experimental bioactivity data. Conclusion: The identified non-conserved residues likely to play critical role on molecular reorganization and inhibitor selectivity. Taken together, this study explained the molecular basis of PKD1 specific inhibition, which may help to design new selective inhibitors for better therapies to overcome cancer and PKD1 dysregulated disorders.


2020 ◽  
Vol 21 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mohammad J. Hosen ◽  
Mahmudul Hasan ◽  
Sourav Chakraborty ◽  
Ruhshan A. Abir ◽  
Abdullah Zubaer ◽  
...  

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site. Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed. Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region. Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.


2019 ◽  
Vol 16 (11) ◽  
pp. 1194-1201 ◽  
Author(s):  
Farhad Saravani ◽  
Ebrahim Saeedian Moghadam ◽  
Hafezeh Salehabadi ◽  
Seyednasser Ostad ◽  
Morteza Pirali Hamedani ◽  
...  

Background: The role of microtubules in cell division and signaling, intercellular transport, and mitosis has been well known. Hence, they have been targeted for several anti-cancer drugs. Methods: A series of 3-(alkylthio)-5,6-diphenyl-1,2,4-triazines were prepared and evaluated for their cytotoxic activities in vitro against three human cancer cell lines; human colon carcinoma cells HT-29, human breast adenocarcinoma cell line MCF-7, human Caucasian gastric adenocarcinoma cell line AGS as well as fibroblast cell line NIH-3T3 by MTT assay. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model. Compound 5d as the most active compound was selected for studying of microtubule disruption. Results: Compound 5d showed potent cytotoxic activity against all cell lines. The molecular modeling study revealed that some derivatives of triazine strongly bind to colchicine binding site. The tubulin polymerization assay kit showed that the cytotoxic activity of 5d may be related to inhibition of tubulin polymerization. Conclusion: The cytotoxicity and molecular modeling study of the synthesized compounds with their inhibition activity in tubulin polymerization demonstrate the potential of triazine derivatives for development of new anti-cancer agents.


2020 ◽  
Vol 16 (6) ◽  
pp. 784-795
Author(s):  
Krisnna M.A. Alves ◽  
Fábio José Bonfim Cardoso ◽  
Kathia M. Honorio ◽  
Fábio A. de Molfetta

Background:: Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease. Objective:: The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana). Methods: A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations. Results:: Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity. Conclusion:: he use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.


2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


1991 ◽  
Vol 56 (11) ◽  
pp. 2306-2312 ◽  
Author(s):  
Anjum Muzaffar ◽  
Ernest Hamel ◽  
Rouli Bai ◽  
Arnold Brossi

Synthesis of isothiocyanato substituted thiocolchicines XI - XIV is described. Introduction of an isotope label is demonstrated with the deuterated isothiocyanate XII and the 14C-labeled analog XIII. These isothiocyanates inhibit tubulin polymerization at low concentration. In addition, the 14C-labeled XIII forms covalent bond(s) with tubulin. Unfortunately, the covalent reaction while rapid, is not inhibited by preincubation of tubulin with colchicine. The covalent interaction of XIII with tubulin thus appears to be nonspecific, limiting its use as a marker of the colchicine binding site on tubulin.


Sign in / Sign up

Export Citation Format

Share Document