Displacement process analysis of deep tunnels with grouted rockbolts considering bolt installation time and bolt length

2021 ◽  
Vol 140 ◽  
pp. 104437
Author(s):  
Zhenyu Sun ◽  
Dingli Zhang ◽  
Qian Fang ◽  
Daoping Liu ◽  
Guansuo Dui
1950 ◽  
Vol 14 (3) ◽  
pp. 235-235
Author(s):  
No authorship indicated

2019 ◽  
Vol 10 (1) ◽  
pp. 1-27
Author(s):  
Aniek Wijayanti

Business Process Analysis can be used to eliminate or reduce a waste cost caused by non value added activities that exist in a process. This research aims at evaluating activities carried out in the natural material procurement process in the PT XYZ, calculating the effectiveness of the process cycle, finding a way to improve the process management, and calculating the cost reduction that can achieved by activity management. A case study was the approach of this research. The researcher obtained research data throughout deep interviews with the staff who directly involved in the process, observation, and documentation of natural material procurement. The result of this study show that the effectiveness of the process cycle of natural material procurement in the factory reached as much as 87,1% for the sand material and 72% for the crushed stone. This indicates that the process still carry activities with no added value and still contain ineffective costs. Through the Business Process Mechanism, these non value added activities can be managed so that the process cycle becomes more efficient and cost effectiveness is achieved. The result of the effective cycle calculation after the management activities implementation is 100%. This means that the cost of natural material procurement process has become effective. The result of calculation of the estimated cost reduction as a result of management activity is as much as Rp249.026.635,90 per year.


2020 ◽  
Vol 2020 (7) ◽  
pp. 24-30
Author(s):  
Mihail Zamoryonov ◽  
Vadim Kopp ◽  
Yuriy Rapatsky ◽  
Daria Zamoryonova ◽  
Victoria Lipka

The application of a path method allowing the simulation of the process of semi-mark system operation is considered. There is shown a sample of the technological complex during the operation of which various failures are possible. The simulation of the technological complex taking into account depreciating failures is carried out; the accuracy of the path method is confirmed.


Author(s):  
J. Douglass ◽  
T. D. Myers ◽  
F. Tsai ◽  
R. Ketcheson ◽  
J. Errett

Abstract This paper describes how the authors used a combination of focused ion beam (FIB) microprobing, transmission electron microscopy (TEM), and data and process analysis to determine that localized water residue was causing a 6% yield loss at die sort.


Author(s):  
Daniel Cavasin ◽  
Abdullah Yassine

Abstract Bond pad metal corrosion was observed during assembly process characterization of a 0.13um Cu microprocessor device. The bond pad consisted of 12kÅ of Al-0.5%Cu atop 9kÅ of Cu, separated by a thin Ta diffusion barrier. The corrosion was first noted after the wafer dicing process. Analysis of the pad surface revealed pitting-type corrosion, consistent with published reports of classic galvanic cell reactions between Al2Cu (theta phase) particles and the surrounding Al pad metal. Analysis of the bond pads on samelot wafers which had not been diced showed higher-thanexpected incidence of hillock and pit hole defects on the Al surface. Statistically designed experiments were formulated to investigate the possibility that the observed pre-saw pad metal defects act as nucleation sites for galvanic corrosion during the sawing process. Analyses of the experimental samples were conducted using optical and scanning electron microscopy, along with focused ion beam deprocessing and energy dispersive X-ray. This paper explores the relationship between the presence of these pre-existing defects and the propensity for the bond pads to corrode during the dicing process, and reviews the conditions under which pit hole defects are formed during the final stages of the Cu-metallized wafer fabrication process. Indications are that strict control of wafer fab backend processes can reduce or eliminate the incidence of such defects, resulting in elimination of bond pad corrosion in the wafer dicing process.


Sign in / Sign up

Export Citation Format

Share Document