Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly(ε-caprolactone)/epoxy composites

2016 ◽  
Vol 125 ◽  
pp. 62-70 ◽  
Author(s):  
Yan Zhang ◽  
Ping'an Song ◽  
Hongzhi Liu ◽  
Qian Li ◽  
Shenyuan Fu
2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


2018 ◽  
Vol 40 (S2) ◽  
pp. E1504-E1511 ◽  
Author(s):  
Gibeop Nam ◽  
Jeachul Kim ◽  
Jung‐Il Song

2018 ◽  
Vol 2 ◽  
pp. 145-154 ◽  
Author(s):  
Viviane Costa Correia ◽  
Sergio Francisco Santos ◽  
Holmer Savastano Jr ◽  
Vanderley Moacyr John

Vegetable fibers produced from agroindustrial resources in the macro, micro and nanometric scales have been used as reinforcement in cementitious materials. The cellulosic pulp, besides being used as the reinforcing element, is also the processing fiber that is responsible for the filtration system in the Hatcheck method. On the other hand, the nanofibrillated cellulose has the advantage of having good mechanical performance and high specific surface, which contributes to improve the adhesion between fiber and matrix. In the hybrid reinforcement, with micro and nanofibers, the cellulose performs bonding elements with the matrix and acts as stress transfer bridges in the micro and nano-cracking network with the corresponding strengthening and toughening of the cementitious composite. Some strategies are studied to mitigate the degradation of the vegetable fibers used in cost-effective and non-conventional fiber cement, as well as to reach a sustainable fiber cement production. As a practical example, the accelerated carbonation curing at early age is a developing technology to increase the durability of composite materials: it decreases porosity, promotes a higher density in the interface generating a good fiber–matrix adhesion and a better mechanical behavior. Thus, the vegetable fibers are potentially applicable to produce high mechanical performance and sustainable cementitious materials for use in the Civil Construction.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4801
Author(s):  
Yasir Khaleel Kirmasha ◽  
Mohaiman J. Sharba ◽  
Zulkiflle Leman ◽  
Mohamed Thariq Hameed Sultan

Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.


2019 ◽  
Vol 7 (7) ◽  
pp. 2981-2992 ◽  
Author(s):  
Tobias Keplinger ◽  
Xiaoqing Wang ◽  
Ingo Burgert

We compare functional NFC composites and wood derived scaffolds regarding mechanical performance, electric and magnetic properties as well as oil/water separation and heavy metal remediation.


Sign in / Sign up

Export Citation Format

Share Document