Modeling the modulus of bitumen/SBS composite at different temperatures based on kinetic models

Author(s):  
Chuanqi Yan ◽  
Quan Lv ◽  
Allen A. Zhang ◽  
Changfa Ai ◽  
Weidong Huang ◽  
...  
2018 ◽  
Vol 12 (1) ◽  
pp. 178-187
Author(s):  
Baghdad Science Journal

A new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorption, the Langmuir, Freundlich and Temkin isotherms were used. The Langmuir isotherm correlation (R2=0.987) was the best fitted for experimental data with maximum adsorption capacity of 200 ppm. A higher correlation value of the kinetic's model was observed close to pseudo first order, second order and Temkin kinetic models values of correlation R2 lie in the range (0.983-0.987) in comparing to other kinetic models.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2185
Author(s):  
Rosnah Shamsudin ◽  
Siti Hajar Ariffin ◽  
Wan Nor Zanariah Zainol @Abdullah ◽  
Nazatul Shima Azmi ◽  
Arinah Adila Abdul Halim

Dabai (Canarium odontophyllum Miq.) is a fruit that is often eaten by first blanching in hot water to make the flesh creamier and softer, before it is served as a snack or side dish. In this study, Dabai fruit was blanched at different temperatures between 60 and 100 °C, with an increment of 10 °C, for up to 10 min, and the kinetics of quality changes (color and texture) were studied. Kinetic models that were assessed for changes of color and texture were zero-order, first-order, and fractional conversion model. The results showed that L parameter had no change throughout the blanching process, while parameters a*, b*, chroma (C), and total color difference (TCD) resulted as significantly increased as the temperature and duration of blanching increased. However, the change of firmness was not significant due to minor changes of firmness as the temperature and time increased. In terms of kinetic models, zero and fractional-conversion order well described the changes of a* parameter; while zero, first and fractional conversion well described parameters b*, C and TCD. Change of firmness did not fit with zero or first-order. All of the kinetic models obeyed the Arrhenius equation. Thus, the fitted kinetic models can be used to design the blanching process of Dabai fruit.


2018 ◽  
Vol 172 (2) ◽  
pp. 522-543 ◽  
Author(s):  
E. A. Carlen ◽  
R. Esposito ◽  
J. L. Lebowitz ◽  
R. Marra ◽  
C. Mouhot

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1065
Author(s):  
Lidia Reczek ◽  
Magdalena M. Michel ◽  
Yuliia Trach ◽  
Tadeusz Siwiec ◽  
Marta Tytkowska-Owerko

The study aimed to determine the nature of the kinetics of the manganese sorption process on Ukrainian tuff and basalt at different temperatures characteristic of the natural water environment. The scope of the research included manganese sorption kinetic test on natural mineral sorbents at temperatures of 10, 17.5 and 25 °C in slightly acidic conditions. Sorption (pseudo-first order, pseudo-second order and Elovich models) and diffusion kinetic models (liquid film diffusion and intraparticle diffusion) were used in the analysis of test results. The manganese sorption process on both tuff and basalt proceeded quickly. The dynamic equilibrium state of manganese sorption settled after 35 and 45 min on tuff and basalt respectively. Although the process took place in a slightly acidic environment and below pHPZC of the sorbents, possible electrostatic repulsion did not inhibit the removal of Mn. The Mn sorption on both materials followed the PSO kinetics model. Based on the diffusion kinetic models, it was determined that Mn sorption process on both materials was influenced by diffusion through the boundary layer and intraparticle diffusion. The differences in removal efficiency and rate of Mn sorption in the temperature range of 10–25 °C were not found.


Author(s):  
J. L. Brimhall ◽  
H. E. Kissinger ◽  
B. Mastel

Some information on the size and density of voids that develop in several high purity metals and alloys during irradiation with neutrons at elevated temperatures has been reported as a function of irradiation parameters. An area of particular interest is the nucleation and early growth stage of voids. It is the purpose of this paper to describe the microstructure in high purity nickel after irradiation to a very low but constant neutron exposure at three different temperatures.Annealed specimens of 99-997% pure nickel in the form of foils 75μ thick were irradiated in a capsule to a total fluence of 2.2 × 1019 n/cm2 (E > 1.0 MeV). The capsule consisted of three temperature zones maintained by heaters and monitored by thermocouples at 350, 400, and 450°C, respectively. The temperature was automatically dropped to 60°C while the reactor was down.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Author(s):  
S. Yegnasubramanian ◽  
V.C. Kannan ◽  
R. Dutto ◽  
P.J. Sakach

Recent developments in the fabrication of high performance GaAs devices impose crucial requirements of low resistance ohmic contacts with excellent contact properties such as, thermal stability, contact resistivity, contact depth, Schottky barrier height etc. The nature of the interface plays an important role in the stability of the contacts due to problems associated with interdiffusion and compound formation at the interface during device fabrication. Contacts of pure metal thin films on GaAs are not desirable due to the presence of the native oxide and surface defects at the interface. Nickel has been used as a contact metal on GaAs and has been found to be reactive at low temperatures. Formation Of Ni2 GaAs at 200 - 350C is reported and is found to grow epitaxially on (001) and on (111) GaAs, but is shown to be unstable at 450C. This paper reports the investigations carried out to understand the microstructure, nature of the interface and composition of sputter deposited and annealed (at different temperatures) Ni-Sb ohmic contacts on GaAs by TEM. Attempts were made to correlate the electrical properties of the films such as the sheet resistance and contact resistance, with the microstructure. The observations are corroborated by Scanning Auger Microprobe (SAM) investigations.


1986 ◽  
Vol 83 ◽  
pp. 725-732 ◽  
Author(s):  
J.J. Heizmann ◽  
J. Bessieres ◽  
A. Bessieres
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document