Coupled dynamic buckling of thin-walled composite columns with open cross-sections

2013 ◽  
Vol 95 ◽  
pp. 28-34 ◽  
Author(s):  
Andrzej Teter ◽  
Zbigniew Kolakowski
2016 ◽  
Vol 10 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Zbigniew Kołakowski ◽  
Andrzej Teter

AbstractA review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM) or/and analytical-numerical method (ANM) to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 167
Author(s):  
Patryk Rozylo

The novelty of this paper, in relation to other thematically similar research papers, is the comparison of the failure phenomenon on two composite profiles with different cross-sections, using known experimental techniques and advanced numerical models of composite material failure. This paper presents an analysis of the failure of thin-walled structures made of composite materials with top-hat and channel cross-sections. Both experimental investigations and numerical simulations using the finite element method (FEM) are applied in this paper. Tests were conducted on thin-walled short columns manufactured of carbon fiber reinforced polymer (CFRP) material. The experimental specimens were made using the autoclave technique and thus showed very good strength properties, low porosity and high surface smoothness. Tests were carried out in axial compression of composite profiles over the full range of loading—up to total failure. During the experimental study, the post-buckling equilibrium paths were registered, with the simultaneous use of a Zwick Z100 universal testing machine (UTM) and equipment for measuring acoustic emission signals. Numerical simulations used composite material damage models such as progressive failure analysis (PFA) and cohesive zone model (CZM). The analysis of the behavior of thin-walled structures subjected to axial compression allowed the evaluation of stability with an in-depth assessment of the failure of the composite material. A significant effect of the research was, among others, determination of the phenomenon of damage initiation, delamination and loss of load-carrying capacity. The obtained results show the high qualitative and quantitative agreement of the failure phenomenon. The dominant form of failure occurred at the end sections of the composite columns. The delamination phenomenon was observed mainly on the outer flanges of the structure.


2016 ◽  
Vol 99 ◽  
pp. 109-118 ◽  
Author(s):  
H. Assaee ◽  
J. Rouzegar ◽  
M.S. Saeedi Fakher ◽  
A. Niknejad

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3468
Author(s):  
Zbigniew Kolakowski ◽  
Andrzej Teter

The phenomena that occur during compression of hybrid thin-walled columns with open cross-sections in the elastic range are discussed. Nonlinear buckling problems were solved within Koiter’s approximation theory. A multimodal approach was assumed to investigate an effect of symmetrical and anti-symmetrical buckling modes on the ultimate load-carrying capacity. Detailed simulations were carried out for freely supported columns with a C-section and a top-hat type section of medium lengths. The columns under analysis were made of two layers of isotropic materials characterized by various mechanical properties. The results attained were verified with the finite element method (FEM). The boundary conditions applied in the FEM allowed us to confirm the eigensolutions obtained within Koiter’s theory with very high accuracy. Nonlinear solutions comply within these two approaches for low and medium overloads. To trace the correctness of the solutions, the Riks algorithm, which allows for investigating unsteady paths, was used in the FEM. The results for the ultimate load-carrying capacity obtained within the FEM are higher than those attained with Koiter’s approximation method, but the leap takes place on the identical equilibrium path as the one determined from Koiter’s theory.


1995 ◽  
Vol 55 (6) ◽  
pp. 1045-1054 ◽  
Author(s):  
H. Shakourzadeh ◽  
Y.Q. Guo ◽  
J.-L. Batoz
Keyword(s):  

2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Sign in / Sign up

Export Citation Format

Share Document