Flexural behaviour of arch-type steel fibre reinforced cementitious composites

2015 ◽  
Vol 134 ◽  
pp. 565-571 ◽  
Author(s):  
Jong-Pil Won ◽  
Jae-Ho Lee ◽  
Su-Jin Lee
2018 ◽  
Vol 15 (1) ◽  
pp. 31
Author(s):  
Nur Aiman Suparlan ◽  
Muhammad Azrul Ku Ayob ◽  
Hazrina Ahmad ◽  
Siti Hawa Hamzah ◽  
Mohd Hisbany Mohd Hashim

A ribbed slab structure has the advantage in the reduction of concrete volume in between the ribs resulting in a lower structural self-weight. In order to overcome the drawbacks in the construction process, the application of steel fibre self-compacting concrete (SCFRC) is seen as an alternative material to be used in the slab. This preliminary investigation was carried out to investigate the flexural behaviour of steel fibre self-compacting concrete (SCFRC) as the main material in ribbed slab omitting the conventional reinforcements. Two samples of ribbed slab were prepared for this preliminary study; 2-ribbed and 3-ribbed in 1 m width to identify the effect of the geometry to the slab’s flexural behaviour. The dimension of both samples is 2.5 m x 1 m with 150 mm thickness. The compressive strength of the mix is 48.6 MPa based on the cubes tested at 28 days. Load was applied to failure by using the four point bending test set-up with simple support condition. The result of the experiment recorded ultimate load carrying capacity at 30.68 kN for the 2-ribbed slab and 25.52 kN for 3-ribbed slab. From the results, the ultimate load of the 2-ribbed sample exceeds 3-ribbed by approximately 20%. This proved that even with lower concrete volume, the sample can still withstand an almost similar ultimate load. Cracks was also observed and recorded with the maximum crack width of 2 mm. It can be concluded that the steel fibres do have the potential to withstand flexural loadings. Steel fibre reduces macro-crack forming into micro-cracks and improves concrete ductility, as well as improvement in deflection. This shows that steel fibre reinforced self-compacting concrete is practical as it offers good concrete properties as well as it can be mixed, placed easier without compaction. 


2012 ◽  
Vol 94 (4) ◽  
pp. 1443-1449 ◽  
Author(s):  
Jong-Pil Won ◽  
Byung-Tak Hong ◽  
Tei-Joon Choi ◽  
Su-Jin Lee ◽  
Joo-Won Kang

2017 ◽  
Vol 23 (6) ◽  
pp. 806-813 ◽  
Author(s):  
Inmaculada MARTÍNEZ-PÉREZ ◽  
Juozas VALIVONIS ◽  
Remigijus ŠALNA ◽  
Alfonso COBO-ESCAMILLA

The building of structures from steel fibre reinforced concrete (SFRC) in the external and conventional rein­forced concrete (RC) in the internal layer represents an economical alternative of structures effectively using SFRC. The paper presents test results of flexural behaviour of layered beams with SFRC external layers and RC internal layer. The behaviour of these beams is compared to test results of SFRC and conventional RC beams. The test results show, that the flexural load capacity for all series of beams is nearly similar, but the deflections of layered beams are less comparing to monolithic ones. It also been shown that the equations indicated in the Eurocode 2 can be used to design the flexural reinforcement in layered SFRC beams.


2018 ◽  
Vol 788 ◽  
pp. 30-35
Author(s):  
Arturs Lukasenoks ◽  
Rolands Cepuritis

Steel moulds in the form of a rigid cubical shell were developed in order to investigate single steel fibre pull-out resistance in concrete with expansive additive under restrained hardening conditions. The cubical shell (100 x 100 x 100 mm) with wall thickness of 5 mm was designed with two openings – a small 4 mm hole for fibre embedment in concrete and a larger opening for filling the concrete. Standard beam (100 x 100 x 400 mm) and cube (150 x 150 x 150 mm) samples were also manufactured and hardened under and without restrained conditions, where the restraint was realised by rigid standard steel moulds. All the restrained conditions realized by either the developed cubical steel shell (for single fibre pull-out) or existing beam and cube moulds simulate internal (from steel fibres in concrete) and external (from friction against sub-base) restraints that hinder expansion of the concrete due to the use of special expansive additives in a flooring slab structure installed on ground. Samples with a single hooked-end steel fibre (50 mm long and 0.75 mm in diameter), with and without expansive additive were manufactured and tested in the developed mould geometry. The results show that restrained expansion in concrete with expansive additives positively affects concrete compressive strength, single fibre pull-out and flexural behaviour. Concrete compressive strength increases by 7.5 %, single fibre delamination resistance increases by 24 %, the peak pull-out load by 10.8 % while the flexural strength increases by 3.1 %.


2014 ◽  
Vol 580-583 ◽  
pp. 2213-2219 ◽  
Author(s):  
Lin Liao ◽  
Sergio Cavalaro ◽  
Albert de la Fuente ◽  
Antonio Aguado

Many researches have been conducted in past decades for promoting the application of steel fibre reinforced concrete (SFRC), either conventional or self-compacting. However, the differences of post-crack behaviour and the properties of these two types of concrete remains unclear. The objective of this paper is to analyse such differences in terms of flexural behaviour, fibre orientation and contribution as well as the fibre content. For that, an extensive experimental campaign was carried out. In total 3 mixes of self-compacting and 3 mixes with traditional concrete were produced with the nominal fibre contents of 30kg/m3, 45kg/m3 and 60kg/m3. In each series, specimens were produces and characterized by three point bending test (code EN 14651) and inductive test. The results illustrate how fibre orientation and distribution justify the differences in the mechanical behaviour of the materials and the scatter of the bending test results.


Sign in / Sign up

Export Citation Format

Share Document