Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression

2016 ◽  
Vol 136 ◽  
pp. 593-601 ◽  
Author(s):  
Hubert Debski ◽  
Andrzej Teter ◽  
Tomasz Kubiak ◽  
Sylwester Samborski
2007 ◽  
Vol 07 (02) ◽  
pp. 213-241 ◽  
Author(s):  
HERVE DEGEE ◽  
NICOLAS BOISSONNADE ◽  
BARBARA ROSSI

This paper presents a special thin-walled plane beam finite element that accounts for the in-plane cross-section local deformation. The element is based on the superposition of a classical beam displacement field and of an additional field describing local effects, with an approximation on the local second-order membrane stress field. The theoretical formulation is summarized and an application of the resulting numerical tool to the post-buckling analysis of RHS thin-walled members with moderate local and global slenderness susceptible to both global and local buckling is then performed. Different types of analyses are presented (computation of critical bifurcation loads, geometrically non-linear analysis, geometrically and materially non-linear analysis). The results obtained with the proposed beam finite element are compared to values provided by shell FE models.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1506
Author(s):  
Patryk Rozylo ◽  
Katarzyna Falkowicz ◽  
Pawel Wysmulski ◽  
Hubert Debski ◽  
Jakub Pasnik ◽  
...  

The paper analyzes the stability and failure phenomenon of compressed thin-walled composite columns. Thin-walled columns (top-hat and channel section columns) were made of carbon fiber reinforced polymer (CFRP) composite material (using the autoclave technique). An experimental study on actual structures and numerical calculations on computational models using the finite element method was performed. During the experimental study, post-critical equilibrium paths were registered with acoustic emission signals, in order to register the damage phenomenon. Simultaneously to the experimental tests, numerical simulations were performed using progressive failure analysis (PFA) and cohesive zone model (CZM). A measurable effect of the conducted experimental-numerical research was the analysis of the failure phenomenon, both for the top-hat and channel section columns (including delamination phenomenon). The main objective of this study was to be able to evaluate the delamination phenomenon, with further analysis of this phenomenon. The results of the numerical tests showed a compatibility with experimental tests.


Sign in / Sign up

Export Citation Format

Share Document