scholarly journals Impact behaviour of a novel composite structure made of a polymer reinforced composite with a 3D printed metallic coating

2020 ◽  
Vol 245 ◽  
pp. 112346 ◽  
Author(s):  
I. Papa ◽  
P. Russo ◽  
A. Astarita ◽  
A. Viscusi ◽  
A.S. Perna ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1235
Author(s):  
Bidita Salahuddin ◽  
Rahim Mutlu ◽  
Tajwar A. Baigh ◽  
Mohammed N. Alghamdi ◽  
Shazed Aziz

Passive vibration control using polymer composites has been extensively investigated by the engineering community. In this paper, a new kind of vibration dampening polymer composite was developed where oriented nylon 6 fibres were used as the reinforcement, and 3D printed unoriented nylon 6 was used as the matrix material. The shape of the reinforcing fibres was modified to a coiled structure which transformed the fibres into a smart thermoresponsive actuator. This novel self-reinforced composite was of high mechanical robustness and its efficacy was demonstrated as an active dampening system for oscillatory vibration of a heated vibrating system. The blocking force generated within the reinforcing coiled actuator was responsible for dissipating vibration energy and increase the magnitude of the damping factor compared to samples made of non-reinforced nylon 6. Further study shows that the appropriate annealing of coiled actuators provides an enhanced dampening capability to the composite structure. The extent of crystallinity of the reinforcing actuators is found to directly influence the vibration dampening capacity.


2018 ◽  
Vol 184 ◽  
pp. 1005-1010 ◽  
Author(s):  
Zhanghao Hou ◽  
Xiaoyong Tian ◽  
Junkang Zhang ◽  
Dichen Li

2016 ◽  
Vol 827 ◽  
pp. 145-148 ◽  
Author(s):  
Sneha Samal ◽  
David Reichmann ◽  
Iva Petrikova ◽  
Bohdana Marvalova

Low velocity impact strength of the fabric reinforced geocomposite has investigated in this article. Various fabrics such as carbon and E-glass were considered for reinforcement in geopolymer matrix. The primary two parameters such as low velocity, impact damage modes are explained on the E-glass and carbon based fabric geocomposite. The onset mode of damage to failure mode is examined through C-scan analysis. The quality of the composite is observed using c-scan with acoustic vibration mode of sensor before and after impact test. Then the effect of fabric and matrix on the impact behaviour is discussed. Residual strength of the composite is measured to determine post impact behaviour. It has been observed that resistance properties of E-glass reinforced composite is better than carbon fabric reinforced composite.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 499
Author(s):  
Olaf Dudek ◽  
Wojciech Klein ◽  
Damian Gąsiorek ◽  
Mariusz Pawlak

3D printing of a composite structure with shape memory materials requires a special approach to the subject, at the stage of the design and printing process. This paper presents the design steps during the development of a 3D-printed composite structure with shape memory material. The connection points between the SMA fibers and the printer filament are developed in the MATLAB environment. Finite element method is used to simulate the shortening of the shape memory material under the influence of temperature and its effect on the printed polymer material is presented. In the MATLAB environment, evolutionary algorithms were used to determine the shape of the SMA fiber alignment. This work demonstrates the use of shape memory effect in 3D printed smart composite structures, where the component takes a predetermined shape. The structure obtained as a result of such printing changes with the heat generated by the current voltage, making it the desired fourth dimension.


2020 ◽  
Vol 26 (6) ◽  
pp. 1113-1129
Author(s):  
Lai Jiang ◽  
Xiaobo Peng ◽  
Daniel Walczyk

Purpose This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing technologies, including powder-based, material extrusion, solid-sheet and liquid-based systems. Detailed information about each process, including materials used and process design, are described, with the resultant products’ mechanical properties compared with those of 3D-printed parts produced from pure resin or different material combinations. In most processes introduced in this paper, biofibers are beneficial in improving the mechanical properties of 3D-printed parts and the biodegradability of the parts made using these green materials is also greatly improved. However, research on 3D printing of biofiber-reinforced composites is still far from complete, and there are still many further studies and research areas that could be explored in the future. Design/methodology/approach The paper starts with an overview of the current scenario of the composite manufacturing industry and then the problems of advanced composite materials are pointed out, followed by an introduction of biocomposites. The main body of the paper covers literature reviews of recently emerged 3D printing technologies that were applied to biofiber-reinforced composite materials. This part is classified into subsections based on the form of the starting materials used in the 3D printing process. A comprehensive conclusion is drawn at the end of the paper summarizing the findings by the authors. Findings Most of the biofiber-reinforced 3D-printed products exhibited improved mechanical properties than products printed using pure resin, indicating that biofibers are good replacements for synthetic ones. However, synthetic fibers are far from being completely replaced by biofibers due to several of their disadvantages including higher moisture absorbance, lower thermal stability and mechanical properties. Many studies are being performed to solve these problems, yet there are still some 3D printing technologies in which research concerning biofiber-reinforced composite parts is quite limited. This paper unveils potential research directions that would further develop 3D printing in a sustainable manner. Originality/value This paper is a summary of attempts to use biofibers as reinforcements together with different resin systems as the starting material for 3D printing processes, and most of the currently available 3D printing techniques are included herein. All of these attempts are solutions to some principal problems with current 3D printing processes such as the limit in the variety of materials and the poor mechanical performance of 3D printed parts. Various types of biofibers are involved in these studies. This paper unveils potential research directions that would further widen the use of biofibers in 3D printing in a sustainable manner.


2020 ◽  
Vol 250 ◽  
pp. 112637 ◽  
Author(s):  
A. Viscusi ◽  
V. Antonucci ◽  
L. Carrino ◽  
R. Della Gatta ◽  
V. Lopresto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document