pure resin
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 63 (12) ◽  
pp. 1090-1096
Author(s):  
Dilek Atilla ◽  
Binnur Gören

Abstract The aim of this study is to investigate the dynamic mechanical properties of composite materials reinforced by mineral experimentally. Graphene and huntite minerals were added to epoxy resin at different weight ratios (wt.-%) as 0.5 weight percent, 1 weight percent and 3 weight percent, to examine the effect of mineral types and percentages on the resulting dynamic mechanical properties. In addition, the effect of non-layered huntite unlike graphene, with a nano-sized grain structure, was investigated. Thus, glass transition temperature (Tg), storage modulus (E’), loss modulus (E”) and damping ratio (tan δ) values were determined and compared. Moreover, a tensile test was performed in order to explain the relation between stress and strain. It was seen that adding different minerals caused different results according to types and proportions. In general, adding minerals to the pure resin increased the storage modulus and loss modulus, whereas the damping ratio (tan δ) decreased compared to the pure resin.


2021 ◽  
Author(s):  
LAI JIANG ◽  
ANANDA S. AMARASEKARAQUINTEN D. JACKSON ◽  
QUINTEN D. JACKSON ◽  
DEPING WANG

This paper investigates the mechanical properties of potential sheet stocks of a Laminated Object Manufacturing (LOM) 3D printer made using woven jute fabrics infused with two types of bioresin. The combinations of bioresins and the reinforcements would make green sheet stocks that are expected to be environmentally friendly comparing to traditional synthetic fibers infused with regular resins. Pure resin samples are also involved for comparison purposes. Both tensile and flexural properties are measured following ASTM D638 and D3039 standards (for tensile tests) as well as ASTM D790 and D7264 standards (for flexural tests). Detailed processes of specimen preparation followed by test procedures are introduced. Tensile strengths and moduli as well as flexural strengths and moduli are obtained for comparison. Based on the study of the mechanical properties of both types of pure resin and woven jute fiber-reinforced composites, the research team concluded a few important findings that could be used as guidelines in the sheet stock selection and preparation for the LOM 3D printer that is currently under the building process.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaowei Feng ◽  
Fei Xue ◽  
Tongyang Zhao ◽  
Wenjie Jiang

Five kinds of steel particles with sizes ranging from 0.6 mm to 2.2 mm with increments of 0.4 mm were mixed with mining resin materials, and the mixing ratio of the particles was also varied. By using this approach, the film gloving problem of coal mine bolting should be effectively solved due to the shredding effects of the particles during bolt rotation. The premise is that the mechanical behavior should not be weakened under such conditions. A total of 47 standard cylindrical specimens were manually prepared, which included pure resin specimens and specimens containing particles with different sizes and weights. First, the homogeneity of a prepared standard specimen was verified by computed tomography (CT) scanning technology. Second, the mechanical improvements provided by each type of particle were evaluated. Thirdly, the effectiveness of both the particle weight and particle size was comprehensively discussed, and the eventual recommendation was to set for the particle size and weight as 1.4 mm and 40 g, respectively, and the particles weight percentage was 7.27%. Finally, the failure patterns for all specimens were collected and comprehensively compared. Additionally, pullout tests were carried out to vindicate the recommended particle size and weight.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2068
Author(s):  
Goretti Arias-Ferreiro ◽  
Ana Ares-Pernas ◽  
Aurora Lasagabáster-Latorre ◽  
Nora Aranburu ◽  
Gonzalo Guerrica-Echevarria ◽  
...  

There is need for developing novel conductive polymers for Digital Light Processing (DLP) 3D printing. In this work, photorheology, in combination with Jacobs working curves, efficaciously predict the printability of polyaniline (PANI)/acrylate formulations with different contents of PANI and photoinitiator. The adjustment of the layer thickness according to cure depth values (Cd) allows printing of most formulations, except those with the highest gel point times determined by photorheology. In the working conditions, the maximum amount of PANI embedded within the resin was ≃3 wt% with a conductivity of 10−5 S cm−1, three orders of magnitude higher than the pure resin. Higher PANI loadings hinder printing quality without improving electrical conductivity. The optimal photoinitiator concentration was found between 6 and 7 wt%. The mechanical properties of the acrylic matrix are maintained in the composites, confirming the viability of these simple, low-cost, conductive composites for applications in flexible electronic devices.


2021 ◽  
Vol 23 (6) ◽  
Author(s):  
Elżbieta Kociołek-Balawejder ◽  
Ewa Stanisławska ◽  
Irena Jacukowicz-Sobala ◽  
Marek Jasiorski

AbstractWhen synthesizing copper compounds containing polymeric adsorbents, it was found that the two copper oxides, Cu2O and CuO, deposited in the skeleton of a strongly basic macroreticular anion exchanger (An) radically diminished the porosity of the obtained composites in relation to the host material. In order to investigate this phenomenon more closely, An/Cu2O and An/CuO (both based on the commercial anion exchanger Amberlite IRA900Cl), containing 8.6 and 8.2 wt% Cu, respectively, were subjected to scrutiny. The porous characteristics of the thermally dried and freeze-dried samples were determined using the N2 adsorption–desorption method and mercury intrusion porosimetry. The thermally dried samples lost their porosity and increased their bulk density in relation to the pure resin indicated a significant reduction in their volume. It was found that during drying, the grains shrank as much as the pores collapsed. The decay of the porous structure resulted from the surface morphology of the Cu2O and CuO particles and their tendency to agglomerate. Both freeze-dried samples retained the porous characteristics typical for macroporous anion exchangers. In contrast to the most popular hybrid ion exchangers containing hydrated polyvalent metal oxides (such FeOOH), An/Cu2O and An/CuO showed markedly strong volume contraction effect in relation to moisture content. Graphical abstract


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2966
Author(s):  
Przemysław Pączkowski ◽  
Andrzej Puszka ◽  
Barbara Gawdzik

The paper investigates the synthesis of green composites and their properties before and after the laboratory accelerated aging tests. Materials were made of unsaturated polyester resins (UPRs) based on recycled poly(ethylene terephthalate) (PET) and wood flour (WF). The effect of dibenzylideneacetone (dba) addition on mechanical and thermomechanical properties was also determined. Green composites were obtained using environment friendly polymeric cobalt as an accelerator. Before and after exposition to the xenon lamp radiation, the UPRs physically modified by WF were characterized only by a greater flexural modulus compared with the analogous composites based on the pure resin. Addition of dba caused the increase of flexural modulus, flexural strength, strain at break and mechanical loss factor compared to the non-modified material. After aging only the last mentioned parameter took on lower values compared to the pure resin analogues.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2945
Author(s):  
Martin Tichý ◽  
Viktor Kolář ◽  
Miroslav Müller ◽  
Rajesh Kumar Mishra ◽  
Vladimír Šleger ◽  
...  

This research evaluates the mechanical properties of hybrid adhesive bonds with various 100% cotton fabrics in static and quasi-static conditions and the influence of alkali surface treatment (NaOH) of the cotton fabrics on the mechanical properties. Biological fibers in polymers are characterized by low wettability with the matrix, which decreases mechanical properties. Adhesive bonds usually operate in cyclic stress, which causes irreversible failure before maximal strength. In this paper, a quasi-static test was used to load the adhesive bonds in 5–50% (192–1951 N) and 5–70% (192–2732 N) intervals with 1000 cycles. The results of SEM analysis showed good wettability of alkali treated cotton fabric with NaOH solution in hybrid adhesive bonds. The static test proved the influence of reinforcing cotton fabrics on shear tensile strength against pure resin, i.e., sample Erik up to 19% on 14.90 ± 1.15 MPa and sample Tera up to 21% on 15.28 ± 1.05 MPa. The adhesive bonds with pure resin did not resist either quasi-static tests. Reinforcing cotton fabrics resisted both quasi-static tests, even shear tensile strength increases up to 10% on 16.34 ± 1.24 MPa for the fabric Erik. The results of strain difference of adhesive bonds with Tera and Erik confirmed that a lower value of the difference during cyclic loading positively influenced the ultimate shear tensile strength.


2020 ◽  
pp. 096739112093011
Author(s):  
Tao-Hsing Chen ◽  
I-Hsin Wang ◽  
Yu-Roung Lee ◽  
Tsung-Han Hsieh

Polymer composite samples were prepared consisting of NC-826 epoxy and approximately 0.1–0.5 wt% aerographite nanomaterial. The compression properties of the various samples were evaluated at strain rates of 10−3–10−1 s−1 using a universal testing machine. The fracture surfaces of the tested samples were examined by scanning electron microscope. Additional composite samples consisting of NC-826 epoxy and 0.3 wt% multiwalled carbon nanotubes (MWCNTs) were prepared and tested under the same compression strain rates of approximately 10−1–10−3 s−1. In general, the results showed that the addition of aerographite nanomaterials to the resin matrix is beneficial in suppressing crack propagation under compression loads and therefore leads to an improved stress, toughness, and fracture strain compared to the pure resin sample. The results additionally showed that the use of MWCNTs as a reinforcement material yields a further small improvement in the mechanical properties of the sample.


2020 ◽  
Vol 26 (6) ◽  
pp. 1113-1129
Author(s):  
Lai Jiang ◽  
Xiaobo Peng ◽  
Daniel Walczyk

Purpose This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing technologies, including powder-based, material extrusion, solid-sheet and liquid-based systems. Detailed information about each process, including materials used and process design, are described, with the resultant products’ mechanical properties compared with those of 3D-printed parts produced from pure resin or different material combinations. In most processes introduced in this paper, biofibers are beneficial in improving the mechanical properties of 3D-printed parts and the biodegradability of the parts made using these green materials is also greatly improved. However, research on 3D printing of biofiber-reinforced composites is still far from complete, and there are still many further studies and research areas that could be explored in the future. Design/methodology/approach The paper starts with an overview of the current scenario of the composite manufacturing industry and then the problems of advanced composite materials are pointed out, followed by an introduction of biocomposites. The main body of the paper covers literature reviews of recently emerged 3D printing technologies that were applied to biofiber-reinforced composite materials. This part is classified into subsections based on the form of the starting materials used in the 3D printing process. A comprehensive conclusion is drawn at the end of the paper summarizing the findings by the authors. Findings Most of the biofiber-reinforced 3D-printed products exhibited improved mechanical properties than products printed using pure resin, indicating that biofibers are good replacements for synthetic ones. However, synthetic fibers are far from being completely replaced by biofibers due to several of their disadvantages including higher moisture absorbance, lower thermal stability and mechanical properties. Many studies are being performed to solve these problems, yet there are still some 3D printing technologies in which research concerning biofiber-reinforced composite parts is quite limited. This paper unveils potential research directions that would further develop 3D printing in a sustainable manner. Originality/value This paper is a summary of attempts to use biofibers as reinforcements together with different resin systems as the starting material for 3D printing processes, and most of the currently available 3D printing techniques are included herein. All of these attempts are solutions to some principal problems with current 3D printing processes such as the limit in the variety of materials and the poor mechanical performance of 3D printed parts. Various types of biofibers are involved in these studies. This paper unveils potential research directions that would further widen the use of biofibers in 3D printing in a sustainable manner.


2020 ◽  
Vol 4 (1) ◽  
pp. 26
Author(s):  
Vanesa Yuste-Sanchez ◽  
Francisco Gonzalez-Gonzalez ◽  
Mario Hoyos ◽  
Miguel A. López Manchado ◽  
Raquel Verdejo

The technological demands imposed on dielectrics and electrical insulation materials are being increasing with the transition from traditional to smart grids. Epoxy resin/conductive polymer (CP) blends with high dielectric permittivity have been prepared by means of a straightforward methodology. Poly(3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI), doped with p-tosylate and ammonium peroxide sulfate (APS), respectively, were synthesized and blended with an epoxy matrix. The addition of 3 wt % of PEDOT and PANI results in permittivity values of 68.9 and 9.5, respectively at 0.1 Hz—1300 and 111 times higher than pure resin. Hence, PEDOT is more effective than PANI at improving the permittivity of the epoxy resin. Moreover, the material retains the electrical insulation of the resin and exhibits a slight increase in thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document