scholarly journals Spatially curved functionally graded Timoshenko microbeams: A numerical study using IGA

2021 ◽  
pp. 114833
Author(s):  
Weihua Fang ◽  
Huifeng Hu ◽  
Tiantang Yu ◽  
Tinh Quoc Bui
2020 ◽  
Vol 9 (1) ◽  
pp. 256-264
Author(s):  
Dinkar Sharma ◽  
Ramandeep Kaur

AbstractThis paper presents, numerical study of stress field in functionally graded material (FGM) hollow cylinder by using finite element method (FEM). The FGM cylinder is subjected to internal pressure and uniform heat generation. Thermoelastic material properties of FGM cylinder are assumed to vary along radius of cylinder as an exponential function of radius. The governing differential equation is solved numerically by FEM for isotropic and anistropic hollow cylinder. Additionally, the effect of material gradient index (β) on normalized radial stresses, normalized circumferential stress and normalized axial stress are evaluated and shown graphically. The behaviour of stress versus normalized radius of cylinder is plotted for different values of Poisson’s ratio and temperature. The graphical results shown that stress field in FGM cylinder is influenced by some of above mentioned parameters.


Author(s):  
Amirtaha Taebi ◽  
Fardin Khalili ◽  
Amirtaher Taebi

In orthopedics, the current internal fixations often use screws or intramedullary rods that obstruct bone material. In this paper, an internal implant was modelled as a hollow cylindrical sector made of a functionally graded material (FGM), which will hold bone in place with less obstruction of bone surface. Functionally graded implant was considered as an inhomogeneous composite structure, with continuously compositional variation from a ceramic at the outer diameter to a metal at the inner diameter. The buckling behavior of the implant was numerically analyzed using a finite element analysis software (ANSYS), and the structural stability of the implant was assessed. The buckling critical loads were calculated for different fixation lengths, cross sectional areas, and different sector angles. These critical loads were then compared with the critical loads of an FGM hollow cylinder with the same cross sectional area. Results showed that the critical load of the hollow cylindrical sector was ∼ 63%, ∼ 70%, and ∼ 73% of the hollow cylinder for different fixation lengths, cross sectional areas, and sector angles, respectively. Further investigations are warranted to study the relation between the composition profile and the implant stability, which can lead to batter internal fixation solutions.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Majid Khayat ◽  
Davood Poorveis ◽  
Shapour Moradi

Linearized buckling analysis of functionally graded shells of revolution subjected to displacement-dependent pressure, which remains normal to the shell's middle surface throughout the deformation process, is described in this work. Material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and a metal. The governing equations are derived based on the first-order shear deformation theory, which accounts for through the thickness shear flexibility with Sanders type of kinematic nonlinearity. Displacements and rotations in the shell's middle surface are approximated by combining polynomial functions in the meridian direction and truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, also known as the pressure stiffness matrix, which accounts for the variation of load direction, is derived for each strip and after assembling resulted in the global load stiffness matrix of the shell, which may be unsymmetric. The load stiffness matrix can be divided into two unsymmetric parts (i.e., load nonuniformity and unconstrained boundary effects) and a symmetric part. The main part of this research is to quantify the effects of these unsymmetries on the follower action of lateral pressure. A detailed numerical study is carried out to assess the influence of various parameters such as power law index of functionally graded material (FGM) and shell geometry interaction with load distribution, and shell boundary conditions on the follower buckling pressure reduction factor. The results indicate that, when applied individually, unconstrained boundary effect and longitudinal nonuniformity of lateral pressure have little effect on the follower buckling reduction factor, but when combined with each other and with circumferentially loading nonuniformity, intensify this effect.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
P. Khazaeinejad ◽  
M. M. Najafizadeh ◽  
J. Jenabi ◽  
M. R. Isvandzibaei

The stability problem of a circular cylindrical shell composed of functionally graded materials with elasticity modulus varying continuously in the thickness direction under combined external pressure and axial compression loads is studied in this paper. The formulation is based on the first-order shear deformation theory. A load interaction parameter is defined to express the combination of applied axial compression and external pressure. The stability equations are derived by the adjacent equilibrium criterion method. These equations are employed to analyze the buckling behavior and obtain the critical buckling loads. A detailed numerical study is carried out to bring out the effects of the power law index of functionally graded material, load interaction parameter, thickness ratio, and aspect ratio on the critical buckling loads. The validity of the present analysis was checked by comparing the present results with those results available in literature.


2017 ◽  
Vol 21 (2) ◽  
pp. 727-757 ◽  
Author(s):  
Rafik Meksi ◽  
Samir Benyoucef ◽  
Abdelkader Mahmoudi ◽  
Abdelouahed Tounsi ◽  
El Abbas Adda Bedia ◽  
...  

In this study, a new shear deformation plate theory is introduced to illustrate the bending, buckling and free vibration responses of functionally graded material sandwich plates. A new displacement field containing integrals is proposed which involves only four variables. Based on the suggested theory, the equations of motion are derived from Hamilton’s principle. This theory involves only four unknown functions and accounts for quasi-parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the sandwich plate. The Navier solution technique is adopted to derive analytical solutions for simply supported rectangular sandwich plates. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the critical buckling loads, deflections, stresses, natural frequencies and sandwich plate type on the bending, buckling and free vibration responses of functionally graded sandwich plates.


Sign in / Sign up

Export Citation Format

Share Document