Mechanical properties of high ductility hybrid fibres reinforced magnesium phosphate cement-based composites

2022 ◽  
pp. 115219
Author(s):  
Hu Feng ◽  
Lulu Li ◽  
Weiqiang Wang ◽  
Zhanqi Cheng ◽  
Danying Gao
2021 ◽  
pp. 103275
Author(s):  
Hu Feng ◽  
Ahmed Jawad Shaukat ◽  
David Rin ◽  
Pu Zhang ◽  
Danying Gao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3169
Author(s):  
Hu Feng ◽  
Yang Wang ◽  
Aofei Guo ◽  
Xiangyu Zhao

In this study, the compressive test and four-point flexural test were carried out to explore the water stability as well as mechanical properties of high ductility magnesium phosphate cement-based composites (HDMC). The effects of ambient curing age (7 d and 28 d), water immersion age (7 d, 28 d, and 56 d), water/binder ratio (W/B), and magnesium oxide/potassium dihydrogen phosphate ratio (M/P) on the mechanical properties (compressive strength, first-crack strength, ultimate flexural strength, ductility index, and toughness index) and water stability of the HDMC were examined. The results showed that the 28-day ambient curing could lead to higher retention rates of strength, ductility, and toughness than 7-day ambient curing, indicating better water stability; however, it did not result in significant improvement in the mechanical properties of the HDMC. As the water immersion age increased, the mechanical properties of the HDMC with 7-day ambient curing showed an obvious downward trend; the mechanical properties of the HDMC with 28-day ambient curing did not show an obvious decrease and even could be increased in many cases, especially when the water immersion age was 56 days; and the change of water stability was consistent with that of the mechanical properties. If all indexes and their corresponding retention rates were considered comprehensively, the W/B ratio of 0.16 and the M/P ratio of 5 seemed to be the optimum values for the HDMC. The scanning electron microscopy analysis confirmed that the water immersion had a large adverse effect on the HDMC and thus reduced their mechanical properties.


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract 850.0 ALUMINUM Alloy can be considered the general purpose light metal bearing alloy. Its good thermal conductivity keeps operating temperatures low. It has high ductility. In many applications it has been found to be superior to steel backed bearings. 852.0 ALUMINUM Alloy has higher mechanical properties making it suitable for heavier load and higher temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Al-290. Producer or source: Federated Bronze Products Inc..


2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


2018 ◽  
Vol 188 ◽  
pp. 946-955 ◽  
Author(s):  
Jihui Qin ◽  
Jueshi Qian ◽  
Zhen Li ◽  
Chao You ◽  
Xiaobing Dai ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3351 ◽  
Author(s):  
Wei Chen ◽  
Xiaoyong Zhang ◽  
YongCheng Lin ◽  
Kechao Zhou

Multi-pass hot rolling was performed on bi-modal Ti-55511 alloy with 50% rolling reduction at 700 °C. Mechanical properties were evaluated by tensile test, and microstructure evolution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the Ti-55511 alloy with bi-modal microstructure exhibits good strength and high ductility (1102 MPa, 21.7%). Comparatively, after 50% hot rolling, an enhanced strength and decreased ductility were obtained. The refinement of α phases leads to the increased tensile strength, while the fragmentation of the equiaxed α phase results in a decreased ductility. The fragmentation process of equiaxed α phases followed the sequence of: elongation of α phases → formation of grooves and localized shear bands → the final fragmentation accomplished via deepening grooves.


2013 ◽  
Vol 405-408 ◽  
pp. 2889-2892 ◽  
Author(s):  
Zhi Qin Zhao ◽  
Ren Juan Sun ◽  
Zi Qiang Feng ◽  
Shan Shan Wei ◽  
Da Wei Huang

Engineered Cementitious Composite (ECC) is a fiber reinforced cement based composite material, which systematically designed on the basis of micromechanics and engineered to achieve high ductility under tensile and shear load. The article introduced the development of ECC as advanced construction material, shown different mechanical properties of ECC, tensile strength, compressive strength, bending strength, shear strength. And in light of recent and future full-scale field applications of ECC were also summarized.


Sign in / Sign up

Export Citation Format

Share Document