Effect of volumetric factors on the mechanical behavior of asphalt fine aggregate matrix and the relationship to asphalt mixture properties

2013 ◽  
Vol 49 ◽  
pp. 672-681 ◽  
Author(s):  
B. Shane Underwood ◽  
Y. Richard Kim
2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Songlin Yue ◽  
Yanyu Qiu ◽  
Pengxian Fan ◽  
Pin Zhang ◽  
Ning Zhang

Analogue material with appropriate properties is of great importance to the reliability of geomechanical model test, which is one of the mostly used approaches in field of geotechnical research. In this paper, a new type of analogue material is developed, which is composed of coarse aggregate (quartz sand and/or barite sand), fine aggregate (barite powder), and cementitious material (anhydrous sodium silicate). The components of each raw material are the key influencing factors, which significantly affect the physical and mechanical parameters of analogue materials. In order to establish the relationship between parameters and factors, the material properties including density, Young’s modulus, uniaxial compressive strength, and tensile strength were investigated by a series of orthogonal experiments with hundreds of samples. By orthogonal regression analysis, the regression equations of each parameter were obtained based on experimental data, which can predict the properties of the developed analogue materials according to proportions. The experiments and applications indicate that sodium metasilicate cemented analogue material is a type of low-strength and low-modulus material with designable density, which is insensitive to humidity and temperature and satisfies mechanical scaling criteria for weak rock or soft geological materials. Moreover, the developed material can be easily cast into structures with complex geometry shapes and simulate the deformation and failure processes of prototype rocks.


1988 ◽  
Vol 55 (1) ◽  
pp. 1-10 ◽  
Author(s):  
E. T. Onat ◽  
F. A. Leckie

The paper is concerned with the representation of the relationship that exists, for a given material and temperature and for small deformations, between histories of applied stress and the observed strain and the accompanying changes in internal structure of the material. Emphasis is given to creep damage in metals as a vehicle for illustration of the main ideas introduced in the paper. In particular, the role played by irreducible even rank tensors in the representation of internal structure is discussed and clarified. The restrictions placed by thermodynamics on constitutive equations are considered and the use of potentials in these equations is examined and criticized.


UKaRsT ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 8
Author(s):  
Sugeng Dwi Hartantyo ◽  
Rasiyo Hepiyanto

Laston is a mixture of coarse aggregate, fine aggregate, and filler with a binder under the temperature of 145-155oC with the composition being studied and regulated by technical specifications. Laston is also known as AC (Asphalt Concrete).Laston itself is commonly used in Indonesia with continuous gradations used for heavy traffic loads. To get the addictive material is not easy and the material is expensive. Therefore, it is necessary to find alternatives to the cellulose fiber. Water hyacinth is a water weed that once grow and develop, it has high cellulose fiber content, which is about 60%.For that, done a research to add a hot asphalt mixture material that aims to improve the quality of mixed result. The selected material is natural water hyacinth. The method used is trial and error with reference of SNI 03-1737-1989. Variations used are 3%, 5%, and 7% of the asphalt weight, asphalt level used Is 5.61%.The result of this study is Marshall evaluation where the greatest score obtained for stability is 1325 kg,  Flow is 3.73 mm, Quotient Marshall is 401.02 kg/mm, VMA is 66.30%, VFWA is 19.25%, and VIM score is 54.35 %. With this result, the asphalt mixture can not be used because the results of VMA, VFWA, and VIM have not been suitable on specification of SNI 03-1737-1989.  Keywords: Laston, Asphalt Concrete, Water Hyacinth, SNI 03-1737-1989.


Sign in / Sign up

Export Citation Format

Share Document