Comparative study of carbide slag autoclaved aerated concrete (AAC) manufactured under thermal oven and microwave pre-curing process: Foaming course, rough body strength and physic-mechanical properties

2020 ◽  
Vol 236 ◽  
pp. 117550 ◽  
Author(s):  
Lixiong Cai ◽  
Tao Tang ◽  
Miao Liu ◽  
Dingkun Xie
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 799
Author(s):  
Dingkun Xie ◽  
Lixiong Cai ◽  
Jie Wang

Adverse side-effects occurred in slurry foaming and thickening process when carbide slag was substituted for quicklime in HCS-AAC. Cement accelerators were introduced to modify the slurry foaming and coagulating process during pre-curing. Meanwhile, the affiliated effects on the physical-mechanical properties and hydration products were discussed to evaluate the applicability and influence of the cement accelerator. The hydration products were characterized by mineralogical (XRD) and thermal analysis (DSC-TG). The results indicated that substituting carbide slag for quicklime retarded slurry foaming and curing progress; meanwhile, the induced mechanical property declination had a negative effect on the generation of C–S–H (I) and tobermorite. Na2SO4 and Na2O·2.0SiO2 can effectively accelerate the slurry foaming rate, but the promoting effect on slurry thickening was inconspicuous. The compressive strength of HCS-AAC obviously declined with increasing cement coagulant content, which was mainly ascribed to the decrease in bulk density caused by the accelerating effect on the slurry foaming process. Dosing Na2SO4 under 0.4% has little effect on the generation of strength contributing to hydration products while the addition of Na2O·2.0SiO2 can accelerate the generation and crystallization of C–S–H, which contributed to the high activity gelatinous SiO2 generated from the reaction between Na2O·2.0SiO2 and Ca(OH)2.


2014 ◽  
Vol 29 (5) ◽  
pp. 1005-1010 ◽  
Author(s):  
Junjie Fan ◽  
Deguang Cao ◽  
Zhenzi Jing ◽  
Yi Zhang ◽  
Li Pu ◽  
...  

2014 ◽  
Vol 899 ◽  
pp. 409-414 ◽  
Author(s):  
Alena Struhárová ◽  
Stanislav Unčík ◽  
Svetozár Balkovic ◽  
Mária Hlavinková

Fluidized fly ash has different physical and chemical properties compared to fly ash emerging from classic combustion. It contains amorphous phases resulting from a dehydration of clay minerals as well as unreacted sorbent of CaCO3, free CaO and anhydrite (CaSO4). Work targets the possibilities of production of an autoclaved aerated concrete (AAC) from fluidized fly ash, and its influence on particular physical-mechanical properties of autoclaved aerated concrete.


2020 ◽  
Vol 850 ◽  
pp. 311-315
Author(s):  
Eva Namsone ◽  
Genadijs Sahmenko ◽  
Elvija Namsone ◽  
Aleksandrs Korjakins

Nowadays, the type of foamed concrete performs a group of cemented composite materials that can compete with conventionally used autoclaved aerated concrete. Improving microstructure of the foamed concrete by inventive mixing technology allows to homogenizate the mix of foamed concrete. This original research is applied to inspection on mixing technology of foamed concrete by using a planetary ball mill. The objective of this paper is to clarify the correlation between physical-mechanical properties and intensive mixing time.


Sign in / Sign up

Export Citation Format

Share Document