Determination of the plastic viscosity of superplasticized cement pastes through capillary viscometers

2020 ◽  
Vol 260 ◽  
pp. 119715
Author(s):  
Ángel de la Rosa ◽  
Elisa Poveda ◽  
Gonzalo Ruiz ◽  
Rodrigo Moreno ◽  
Héctor Cifuentes ◽  
...  
2020 ◽  
Vol 30 (1) ◽  
pp. 54-63
Author(s):  
Willy Mbasha ◽  
Rainer Haldenwang ◽  
Irina Masalova

AbstractNatural gypsum can degenerate into hemihydrate during cement clinker grinding which changes the physical and chemical properties of cement hydration, affecting therefore the fresh and hardened properties of cement based materials. Cement systems containing a constant total amount of calcium sulfate (4%) with relative proportions of hemihydrate and natural gypsum were considered. Rheological measurements were executed on an Anton Paar MCR51 rheometer to evaluate the flow properties of cement pastes. Results show that, the yield stress and the plastic viscosity of cement pastes were affected when the degeneration of natural gypsum exceeded 50%. Above this concentration, the yield stress remarkably increased and a variation in plastic viscosity of about 50% was observed. Using TG-DSC techniques, it was shown that, the amount of formed ettringite could not explain these rheological changes. However, centrifugational packing and SEM-SE measurements confirmed that, more than the amount of ettringite precipitated, ettringite morphology plays a major role in controlling the yield stress and plastic viscosity of fresh cement pastes.


2020 ◽  
Vol 261 ◽  
pp. 120514 ◽  
Author(s):  
Abderrahmane Rhardane ◽  
Frédéric Grondin ◽  
Syed Yasir Alam

1988 ◽  
Vol 137 ◽  
Author(s):  
R. I. A. Malek ◽  
D. M. Roy ◽  
Y. Fang

AbstractThe transport of ions through cement pastes and mortars with variable contents of fly ashes and granulated blast-furnace slag from different sources and with variable composition has been investigated. The research included the determination of chloride diffusion rate and chloride permeability in relation to microstructure development. The median pore size generally was much diminished in mature blended material compared with Portland cement (PC) pastes and mortars. It appears that, at the same age, a finer microstructure is generally developed in blended specimens compared to PC specimens. Also, it was found that the microstructure approaches a limiting value at longer ages of hydration. That limiting value may be reached at earlier ages with the blends. The chloride diffusion rates and permeabilities in the blends were significantly lower than PC mixes. A comparison between the blends containing fly ashes and those containing slag was made.


2016 ◽  
Vol 714 ◽  
pp. 86-89
Author(s):  
Jana Zahálková ◽  
Pavla Rovnaníková

The production of Portland cement is connected with high emissions of greenhouse gases, especially carbon dioxide, and the intensive consumption of energy and natural resources. The present trend is for the replacement of cement by reactive admixtures, which can include ground waste glass, a material which shows pozzolanic activity. This paper deals with the determination of the mechanical properties of cement pastes in which part of the cement mixture (5 to 30 %) was replaced by borosilicate glass. The process by which the hydration of the cement with ground glass began was monitored by an isothermal calorimeter.


2007 ◽  
Vol 353-358 ◽  
pp. 1398-1401
Author(s):  
Jian Qing Gong ◽  
Han Ning Xiao ◽  
Zheng Yu Huang ◽  
Jiu Su Li ◽  
Jing Nie ◽  
...  

The rheological parameters of cement pastes were investigated by varying the type and content of micropowders and the ratio of water to binder. Compressible packing model was used to calculate the packing density and to evaluate the influence of micropowders gradation on the rheological properties of fresh cement pastes. Results indicate that the higher the packing density is, the lower the yielding shear stress and plastic viscosity will be. When the ratio of water to binder is less than 0.20, the cement paste with 15% UFA and 15% SF has highest packing density and lowest yielding shear stress and plastic viscosity, which is beneficial to the workability of ultra-high performance concrete.


2012 ◽  
Vol 27 (1) ◽  
pp. 560-569 ◽  
Author(s):  
Qiang Zeng ◽  
Kefei Li ◽  
Teddy Fen-chong ◽  
Patrick Dangla

Sign in / Sign up

Export Citation Format

Share Document