Evaluation of cooling effect and pavement performance for thermochromic material modified asphalt mixtures under solar radiation

2020 ◽  
Vol 261 ◽  
pp. 120589
Author(s):  
Qiang Li ◽  
Tingyu Hu ◽  
Sang Luo ◽  
Lei Gao ◽  
Chaohui Wang ◽  
...  
2011 ◽  
Vol 266 ◽  
pp. 175-179 ◽  
Author(s):  
Yuan Xun Zheng ◽  
Ying Chun Cai ◽  
Ya Min Zhang

In order to discuss the effect of the basalt fiber on reinforcing pavement performance of asphalt mixtures, the optimum dosage of asphalt and fibers were studied by the method of Marshall test and rut test firstly. Then pavement performances of basalt fiber-modified asphalt mixtures were investigated through tests of high temperature stability, water stability and low temperature crack resistance, and compared with that of polyester fiber, xylogen fiber and control mixture. The testing results showed that the pavement performance of fiber-modified asphalt mixture are improved and optimized comparing with control asphalt mixture, and the performance of basalt fiber-modified asphalt mixture with best composition were excelled than those of polyester fiber and xylogen fiber.


2020 ◽  
Vol 10 (12) ◽  
pp. 4187
Author(s):  
Luís Picado-Santos ◽  
João Crucho

This Special Issue is dedicated to the use of nanomaterials for the modification of asphalt binders to support the analysis of the relevant properties and to determine if the modification indicated a more efficient use of asphalt mixtures’ fabrication or their modification in the context of asphalt mixtures’ fabrication and the improvement (or lack thereof) of these last ones to constitute effective asphalt pavement layers [...]


2011 ◽  
Vol 287-290 ◽  
pp. 762-766
Author(s):  
Liang Fan ◽  
Xiao Jin Song ◽  
Yu Zhen Zhang

This report mainly evaluated the pavement performance of natural asphalt from Albania. Firstly, base asphalts were processed with natural asphalt by “wet method” modification technique to obtain modified asphalt; and mixture are produced with these modified asphalt binders, and then high temperature performance and moisture stability properties are evaluated by some standard methods. Analysis shows that this natural asphalt can remarkably improve the high temperature and moisture stabilities of asphalt mixture, and own cost-effective advantage.


2014 ◽  
Vol 488-489 ◽  
pp. 558-560
Author(s):  
Xing Song Cao ◽  
Guo Qi Tang ◽  
Shi Xiong Liu ◽  
Xio Qiang Yang ◽  
Bo Chen

The compatibility of rock asphalt modification agent and matrix asphalt was excellent, while different contents of the rock asphalt had great influence on the mechanics properties of mixture. Based on the aggregate grade of the AC-20 mixture, the mechanical properties of the matrix asphalt mixtures and the rock asphalt mixtures with different quantities of rock asphalt were studied by laboratory tests, including the high-temperature stability, low-temperature anti-cracking performance and water stability. This research is to give reference for the proper rock asphalt quantity of the mixture.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


2021 ◽  
Vol 301 ◽  
pp. 124140
Author(s):  
Liyuan Liu ◽  
Xiao Zhang ◽  
Lifei Xu ◽  
Hengji Zhang ◽  
Zhisheng Liu

2011 ◽  
Vol 71-78 ◽  
pp. 5038-5041
Author(s):  
Chang Qing Fang ◽  
Min Zhang ◽  
Jing Bo Hu ◽  
Ying Zhang ◽  
Rui En Yu

Asphalt aging is inevitable to the asphalt pavement performance, which will lead asphalt to hardening gradually and becoming brittle. Therefore, aging progress shortens the life of asphalt, but the study on polymer asphalt improves the phenomenon. The present situation on aging of polymer modified asphalt is summarized and the aging mechanism of modified asphalts is analyzed in the paper. Otherwise, the research progress at home and abroad on the aging properties of modified asphalt is introduced by a series of characterization techniques, which include mechanics technique, rheology technique, FTIR, GPC and so on


Sign in / Sign up

Export Citation Format

Share Document