Pore structure and splitting tensile strength of hybrid Basalt–Polypropylene fiber reinforced concrete subjected to carbonation

2021 ◽  
Vol 297 ◽  
pp. 123779
Author(s):  
Yi Li ◽  
Yueqi Su ◽  
Kiang Hwee Tan ◽  
Xiaotian Zheng ◽  
Junlei Sheng
2021 ◽  
pp. 136943322098862
Author(s):  
Ninghui Liang ◽  
Xiufei You ◽  
Guojun Cao ◽  
Xinrong Liu ◽  
Zuliang Zhong

This paper presents results of an experimental study on the compressive and splitting tensile strength of plain concretes and concretes incorporated with macro, micro and hybrid polypropylene (PP) fibers at elevated temperatures (20 °C, 200 °C, 400 °C, 600 °C, and 800 °C). Nine series of concrete mixtures with different contents PP fibers were prepared and the optimum mixing proportion of different sizes of PP fibers was discussed. The results indicated that the multi-scale polypropylene fiber reinforced concrete (dropped with three different sizes of PP fibers into concrete) had the best positive hybrid effect on resisting to high temperature, when the total PP fiber content was 6 kg/m3 and the macro PP fiber substitution was 80%. Meanwhile, the addition of macro PP fibers significantly enhanced the toughness of concrete. Compared with the value of plain concrete, the compressive and splitting tensile strength of the optimal multi-scale polypropylene fiber reinforced concrete at 800 °C increased 14% and 36% respectively.


2021 ◽  
Vol 1046 ◽  
pp. 1-7
Author(s):  
Manjunath V. Bhogone ◽  
Kolluru V.L. Subramaniam

The fracture response of macro polypropylene fiber reinforced concrete (PPFRC) and hybrid blend of macro and micro polypropylene fiber reinforced concrete (HyFRC) are evaluated at 1, 3, 7 and 28 days. There is an improvement in the early-age fracture response of HyFRC compared to PPFRC. The changing cohesive stress-crack separation relationship produced by ageing of the concrete matrix is determined from the fracture test responses. An improved early-age cohesive stress response is obtained from the hybrid blend containing micro and macro fibers. The hybrid fiber blend also has a higher tensile strength at early age when compared to an identical volume fraction of macro polypropylene fibers.


2020 ◽  
Vol 12 (2) ◽  
pp. 549
Author(s):  
Chenfei Wang ◽  
Zixiong Guo ◽  
Ditao Niu

Polypropylene-fiber-reinforced concrete impacts the early shrinkage during the plastic stage of concrete, and the fiber volume content influences the durability-related properties of concrete. The purpose of this paper was to investigate the influence of fiber volume content on the mechanical properties, durability, and chloride ion penetration of polypropylene-fiber-reinforced concrete in a chloride environment. Tests were carried out on cubes and cylinders of polypropylene-fiber-reinforced concrete with polypropylene fiber contents ranging from 0% to 0.5%. Extensive data from flexural strength testing, dry–wet testing, deicer frost testing, and chloride penetration testing were recorded and analyzed. The test results show that the addition of the fiber improves the failure form of the concrete specimens, and 0.1% fiber content maximizes the compactness of the concrete. The flexural strength of specimen C2 with 0.1% fiber shows the highest strength obtained herein after freeze–thaw cycling, and the water absorption of specimen C2 is also the lowest after dry–wet cycling. The results also indicate that increasing the fiber volume content improves the freeze–thaw resistance of the concrete in a chloride environment. Chlorine ions migrate with the moisture during dry–wet and freeze–thaw cycling. The chlorine ion diffusion coefficient (Dcl) increases with increasing fiber content, except for that of specimen C2 in a chloride environment. The Dcl during freeze–thaw cycling is much higher than that during dry–wet cycling.


2018 ◽  
Vol 13 (2) ◽  
pp. 20-41 ◽  
Author(s):  
Ali Mardani-Aghabaglou ◽  
Süleyman Özen ◽  
Muhammet Gökhan Altun

In this study, the durability performance and dimensional stability of polypropylene fiber reinforced concrete mixture were investigated. For this purpose, two series of concrete mixtures, including a 0.45 water/cement ratio was prepared both in the absence and presence of fiber. A CEMI 42.5 R type portland cement and crushed limestone aggregate with a maximum particle size of 25 mm were used. In addition to the control mixture without fiber, three different concrete mixtures were prepared by adding polypropylene fiber as 0.4%, 0.8% and 1% of total volume into the mixture. The time-dependent fresh state properties, strength, ultrasonic pulse velocity, transport properties, drying shrinkage and freeze-thaw resistance of concrete mixtures, sodium sulfate attack and abrasion were investigated comparatively. Test results demonstrated that utilization of fiber affected the fresh properties of the concrete mixtures negatively. However, the 0.8% fiber-bearing mixture showed the highest performance in terms of durability and dimensional stability. Beyond this utilization ratio, the durability performance of the concrete mixture was negatively affected. The risk of nonhomogeneous dispersion of the fiber in the mixture was relatively high in the excess fiber-bearing mixture. Consequently, with the formation of flocculation in the mixture the void ratio of concrete mixture increased.


Sign in / Sign up

Export Citation Format

Share Document