scholarly journals Effect of casting and curing temperature on the interfacial bond strength of epoxy bonded concretes

2021 ◽  
Vol 307 ◽  
pp. 124328
Author(s):  
Dana Daneshvar ◽  
Karl Deix ◽  
Agathe Robisson
2012 ◽  
Vol 517 ◽  
pp. 932-938 ◽  
Author(s):  
Zhi Fang ◽  
Hong Qiao Zhang

There exist the problems such as low bond strength and bad durability in the ordinary grouting slurry of the ground anchor system at present. The high-performance grouting mediums RPC (Reactive Powder Concrete) and DSP (Densified Systems containing homogeneously arranged ultrafine Particles) would become the potential replacement of grouting medium in ground anchor resulting from their high compressive strength, durability and toughness. Based on a series of pull-out tests on ground anchors with different high-performance grouting medium of RPC and DSP , different bond length in the construction field, the bond performance on the interfaces between anchor bolt (deformed steel bar) and grouted medium as well as between grouted medium and rock mass was studied. The results indicate that the interfacial bond strength between RPC or DSP and deformed steel bolt ranges within 23-31Mpa, far greater than that (about 2-3MPa) between the ordinary cementitious grout and deformed steel bar. Even though the interfacial bond strength between the grouted medium and rock mass of limestone was not obtained in the test since the failure mode was pull-out of those steel bar rather than the interface shear failure between grouted medium and rock mass, the bond stress on the interface reached 6.2-8.38 MPa, also far greater than the bond strength (about 0.1-3MPa) between the ordinary cementitious slurry and rocks.


2002 ◽  
Vol 11 (1) ◽  
pp. 096369350201100 ◽  
Author(s):  
J. M. Caceres ◽  
A. N. Netravali

The paper discusses a simple specimen geometry to obtain the fibre/cement interfacial shear strength (IFSS). The specimens are easy to prepare and easy to test. The technique gives reliable and reproducible results. IFSS results for five different fibres with cement were measured. Most IFSS values obtained are in the range of 0.15 to 1.5 MPa. Despite the simplicity of the technique presented in this study, the results are in agreement with those obtained by several other researchers using different techniques and specimen geometry.


Soft Matter ◽  
2018 ◽  
Vol 14 (18) ◽  
pp. 3504-3509 ◽  
Author(s):  
Yu Tong ◽  
Xufeng Dong ◽  
Min Qi

The interfacial bond strength and field-induced storage modulus of magnetorheological elastomers can be enhanced by using flower-like active particles.


Author(s):  
Karun Kalia ◽  
Amir Ameli

Abstract Layered multi-materials of dissimilar polymers and their nanocomposites offer new opportunities as smart materials and structures. A critical aspect of such structures is the quality of interlayer adhesion between dissimilar polymer matrices. This work reports the development of asymmetric double cantilever beam (ADCB) specimens of dissimilar polymers and its use in the analysis and understanding of their interlayer adhesion in 3D-printed rigid/soft interfaces. Acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polylactic acid (PLA) were chosen as the rigid polymers and combined with thermoplastic polyurethane (TPU) as the soft component. 3D-printed ADCB specimens were loaded under opening mode, until fracture, to obtain the load-displacement data and the fracture surfaces were analyzed using optical microscopy. ABS/TPU/ABS and PC/TPU/PC material combinations resulted in a more stable crack growth with a high peak load indicating a relatively good interfacial adhesion. The high nozzle temperatures of ABS and PC and their amorphous nature contributed to a good layer-to-layer fusion during 3D printing. However, PLA/TPU/PLA specimens exhibited an unstable crack growth behavior with a pure adhesive failure mode and a significantly lower peak load. This poor interfacial bond strength was correlated to the relatively low nozzle temperature of PLA and its semi-crystalline structure. The maximum loads in ABS/TPU/ABS and PC/TPU/PC specimens were found to be ∼2.5 times greater than that of PLA/TPU/PLA ones. The method provides a valuable tool in quantifying interlayer adhesion quality in printed dissimilar polymers and their functional nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document