Models to predict the mechanical properties of blended SCC containing recycled steel slag and crushed granite stone as coarse aggregate

2021 ◽  
Vol 302 ◽  
pp. 124342
Author(s):  
P. Chandru ◽  
J. Karthikeyan
2020 ◽  
Vol 833 ◽  
pp. 228-232
Author(s):  
Md. Jihad Miah ◽  
Mohammad Shamim Miah ◽  
Anisa Sultana ◽  
Taukir Ahmed Shamim ◽  
Md Ashraful Alom

This work performs experimental investigations on concrete made with difference replacement percentage of first-class burnt clay brick aggregate (0, 10, 20, 30, 40, 50, 60, 80, and 100%) by steel slag (SS) aggregate. The aim is to evaluate the mechanical properties as well as durability performances, additionally, water absorption porosity test is performed to investigate the influence of steel slag aggregate on the durability of tested concrete. The experimental results have shown that the compressive strength was improved significantly due to the replacement of brick aggregate by steel slag aggregate. The crushing strength of concrete made with 100% steel slag aggregate has gained up to 70% more than the control concrete (100% brick aggregate). However, the porosity of concrete was reduced with the adding percentage of brick aggregate by steel slag aggregate which is consistent with the compressive strength results. Further, a quite good agreement between compressive strength and porosity was observed as well.


Recycling of materials has become a major interest for engineers. At present, the amount of slag deposited in storage yard adds up to millions of tons/year leading to the occupation of farm land and serious pollution to the environment, as a result of the rapid growth in the steel industry. Steel slag is made at 1500- 1650°C having a honey comp shape with high porosity. Using steel slag as the natural aggregate with a lower waste material cost can be considered as a good alternative for sustainable constructions. The objective of this study is to evaluate the performance of residual mechanical properties of concrete with steel slag as coarse aggregate partial replacement after exposing to high temperatures .This study investigates the behavior of using granulated slag as partial or fully coarse aggregate replacement with different percentages of 0%, 15%, 30%, 50% and 100% in concrete when subjected to elevated temperatures. Six groups of concrete mixes were prepared using various replacement percentages of slag exposed to different temperatures of 400 °C, 600 °C and 800 °C for different durations of 1hr, 1.5hr and 2hr. Evaluation tests were compressive strength, tensile strength, and bond strength. The steel slag concrete mixes showed week workability lower than control mix. A systematic increasing of almost up to 21.7% in compressive strength, and 66.2% in tensile strength with increasing the percentage of steel slag replacement to 50%. And the results showed improvement on concrete residual mechanical properties after subjected to elevated temperatures with the increase of steel slag content. The findings of this study give an overview of the effect of steel slag coarse aggregate replacement on concrete after exposed to high temperatures.


2020 ◽  
Vol 27 (3) ◽  
pp. 45-60
Author(s):  
Muataz Nayel ◽  
Ammar Khazaal ◽  
Waleed Alabdraba

Recently, the constructions industry begins to make concrete more sustainable, side by side, with making its high performance. This paper aims to investigate the effect of (Metakaolin and Micro Silica) when they replace cement by (8, 12 and 16) % and (6, 9 and 12) % respectively, recycled steel slag when replaces fine aggregate by (10, 20 and 30) %, and recycled mosaic tiles when replaces coarse aggregate by (33.33, 66.67 and 100) % each one another on the slump, density, absorption and compressive strength of concrete. The experimental results showed that the maximum reduction ratio of cement reach (17%) (8% of metakaolin and 9% Micro Silica) while the optimum percentage of mosaic tiles and steel slag is (100%) and (20%) respectively. The optimum percentages obtained are combining to produce three basic green mixes: 1) 17% (8% of Metakaolin and 9% of Micro Silica) only, (2) A mix containing 17% of (Metakaolin and of Micro Silica) plus 100% of recycled mosaic, (3) 17% of (Metakaolin and Micro Silica), 100% of recycled mosaic and 20% of slag. Compressive strength at (7, 28, and 60) days, modulus of rupture at (28) days, absorption, fresh and hardened density are investigated. The best improvement in compressive strength compared with reference concrete was recorded (20.06, 10.855 and 9.983) % at (7, 28 and 60) days respectively for the mix containing (17% of cementitious materials plus 100% of recycled mosaic) while the ultimate flexure strength (24) % appeared in green mix containing (17% of cementitious materials, 100% of recycled mosaic and 20% of slag). Generally, an inverse relationship between density and absorption in all trail mixes which are conducted


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 495
Author(s):  
Mingkai Zhou ◽  
Xu Cheng ◽  
Xiao Chen

The stability of steel-slag road materials remains a critical issue in their utilization as an aggregate base course. In this pursuit, the present study was envisaged to investigate the effects of fly ash on the mechanical properties and expansion behavior of cement-fly-ash-stabilized steel slag. Strength tests and expansion tests of the cement-fly-ash-stabilized steel slag with varying additions of fly ash were carried out. The results indicate that the cement-fly-ash-stabilized steel slag exhibited good mechanical properties. The expansion rate and the number of bulges of the stabilized material reduced with an increase in the addition. When the addition of fly ash was 30–60%, the stabilized material was not damaged due to expansion. Furthermore, the results of X-CT, XRD and SEM-EDS show that fly ash reacted with the expansive component of the steel slag. In addition, the macro structure of the stabilized material was found to be changed by an increase in the concentration of the fly ash, in order to improve the volumetric stability. Our study shows that the cement-fly-ash-stabilized steel slag exhibits good mechanical properties and volumetric stability with reasonable additions of fly ash.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2865
Author(s):  
Md Jihad Miah ◽  
Md. Munir Hossain Patoary ◽  
Suvash Chandra Paul ◽  
Adewumi John Babafemi ◽  
Biranchi Panda

This paper investigates the possibility of utilizing steel slags produced in the steelmaking industry as an alternative to burnt clay brick aggregate (BA) in concrete. Within this context, physical, mechanical (i.e., compressive and splitting tensile strength), length change, and durability (porosity) tests were conducted on concrete made with nine different percentage replacements (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% by volume of BA) of BA by induction of furnace steel slag aggregate (SSA). In addition, the chemical composition of aggregate through X-ray fluorescence (XRF) analysis and microstructural analysis through scanning electron microscopy (SEM) of aggregates and concrete were performed. The experimental results show that the physical and mechanical properties of concrete made with SSA were significantly higher than that of concrete made with BA. The compressive and tensile strength increased by 73% when SSA fully replaced BA. The expansion of concrete made with SSA was a bit higher than the concrete made with BA. Furthermore, a significant lower porosity was observed for concrete made with SSA than BA, which decreased by 40% for 100% SSA concrete than 100% BA concrete. The relation between compressive and tensile strength with the porosity of concrete mixes are in agreement with the relationships presented in the literature. This study demonstrates that SSA can be used as a full replacement of BA, which is economical, conserves the natural aggregate, and is sustainable building material since burning brick produces a lot of CO2.


Sign in / Sign up

Export Citation Format

Share Document